arboretum 发表于 2025-3-23 09:59:15
Introduction,Let . : . → . be a proper, surjective, smooth map of schemes, with all fibers equidimensional with dimension ., and let ω. = Ω.. Grotherndieck’s duality theory produces a trace map . which is an isomorphism when . has geometrically connected fibers. When . = 0, this is just the usual trace map ..泥土谦卑 发表于 2025-3-23 16:47:00
http://reply.papertrans.cn/39/3889/388809/388809_12.pngBAIT 发表于 2025-3-23 18:30:01
http://reply.papertrans.cn/39/3889/388809/388809_13.png压倒性胜利 发表于 2025-3-23 23:05:57
Chee Leok Goh MD, MMed, MRCP(UK), FRCPEllary 4.4.5. In general, we want to recover that (1.1.2) is an isomorphism under local freeness hypotheses on the higher direct images, as well as a suitable analogue with smoothness relaxed to the CM condition. This issue is handled in§ 5.1.结束 发表于 2025-3-24 05:38:45
http://reply.papertrans.cn/39/3889/388809/388809_15.pngHALO 发表于 2025-3-24 07:06:08
http://reply.papertrans.cn/39/3889/388809/388809_16.pngPhysiatrist 发表于 2025-3-24 13:17:09
http://reply.papertrans.cn/39/3889/388809/388809_17.pngvasculitis 发表于 2025-3-24 15:57:53
Duality Foundations, for dualizing sheaves is set up at the end of this chapter. This makes it possible to consider the base change compatibility of the trace map for proper CM morphisms, a problem we will address in Chapter 4.reject 发表于 2025-3-24 20:42:06
http://reply.papertrans.cn/39/3889/388809/388809_19.pngInsul岛 发表于 2025-3-24 23:12:26
http://reply.papertrans.cn/39/3889/388809/388809_20.png