哑剧表演 发表于 2025-3-21 18:52:38
书目名称Grothendieck Duality and Base Change影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0388809<br><br> <br><br>书目名称Grothendieck Duality and Base Change读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0388809<br><br> <br><br>勉强 发表于 2025-3-21 21:43:54
Duality Foundations,aulay case without projectiveness assumptions (although some proofs ultimately reduce via Chow’s Lemma to the analysis of projective space and finite maps, as treated in Chapter 2). The special role of CM maps are that these are exactly the morphisms for which one can define a relative dualizing . (Landlocked 发表于 2025-3-22 00:24:09
Proof of Main Theorem, dimension .. We want to prove Theorem 3.6.5, which asserts that the diagram . commutes; of course this is unaffected by multiplying γ. and γ. by (−).. By the last part of Theorem 3.6.1, if . factorizes into a composite . = . . . . . of maps between noetherian schemes admitting a dualizing complex,运气 发表于 2025-3-22 08:22:03
http://reply.papertrans.cn/39/3889/388809/388809_4.pnginterference 发表于 2025-3-22 11:45:13
Pasture Landscapes and Nature Conservationa smooth (resp. finite) map f : X → Y between locally noetherian schemes. A ‘projective trace’ map Trpf is defined in case X=P. . and f is the canonical projection, and a ‘fundamental local isomorphism’ . is defined in case . is a closed immersion which is a local complete intersection morphism of p阴险 发表于 2025-3-22 13:55:49
aulay case without projectiveness assumptions (although some proofs ultimately reduce via Chow’s Lemma to the analysis of projective space and finite maps, as treated in Chapter 2). The special role of CM maps are that these are exactly the morphisms for which one can define a relative dualizing . (阴险 发表于 2025-3-22 19:35:40
http://reply.papertrans.cn/39/3889/388809/388809_7.pngflutter 发表于 2025-3-22 23:32:23
http://reply.papertrans.cn/39/3889/388809/388809_8.pngCubicle 发表于 2025-3-23 02:11:21
http://reply.papertrans.cn/39/3889/388809/388809_9.pngtooth-decay 发表于 2025-3-23 07:26:37
https://doi.org/10.1007/978-94-017-6056-0Let . : . → . be a proper, surjective, smooth map of schemes, with all fibers equidimensional with dimension ., and let ω. = Ω.. Grotherndieck’s duality theory produces a trace map . which is an isomorphism when . has geometrically connected fibers. When . = 0, this is just the usual trace map ..