EFFCT 发表于 2025-3-21 18:54:56
书目名称Graph-Based Semi-Supervised Learning影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0388004<br><br> <br><br>书目名称Graph-Based Semi-Supervised Learning读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0388004<br><br> <br><br>能够支付 发表于 2025-3-21 22:06:46
http://reply.papertrans.cn/39/3881/388004/388004_2.png繁荣中国 发表于 2025-3-22 02:53:44
Graph Construction,if one is not already available) and (b) inferring the labels on the unlabeled samples in the input or estimating the model parameters. While many algorithms have been developed for label inference , until recently, little attention has been paid to theOafishness 发表于 2025-3-22 04:38:57
http://reply.papertrans.cn/39/3881/388004/388004_4.pngRestenosis 发表于 2025-3-22 09:04:15
Scalability,be the focus of this chapter. We first present some algorithms for constructing graphs over a large number of samples followed by inference in a number of parallel architectures including shared-memory symmetric multi-processors (SMPs) and distributed computers.glacial 发表于 2025-3-22 13:36:35
Applications,ustive enough to duplicate all the experiments and results. Rather, the goal here is to present the different applications and highlight salient aspects. In each case we briefly describe the task, data set, how the graph is constructed, methods used and results. For more details, readers should lookglacial 发表于 2025-3-22 17:45:42
http://reply.papertrans.cn/39/3881/388004/388004_7.pngNeonatal 发表于 2025-3-22 21:32:43
http://reply.papertrans.cn/39/3881/388004/388004_8.pngtriptans 发表于 2025-3-23 01:25:32
https://doi.org/10.1007/978-1-4842-6047-0des in the graph followed by the process of inferring the labels for the unlabeled nodes. In this chapter, we first examine the design choices involved in this seed labeling process. We then present a number of approaches for label inference. While a majority of the graph-based inference approaches有权威 发表于 2025-3-23 09:16:56
https://doi.org/10.1007/978-3-030-62351-7be the focus of this chapter. We first present some algorithms for constructing graphs over a large number of samples followed by inference in a number of parallel architectures including shared-memory symmetric multi-processors (SMPs) and distributed computers.