sesamoiditis 发表于 2025-3-21 17:48:44
书目名称Graph Neural Networks: Foundations, Frontiers, and Applications影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0387931<br><br> <br><br>书目名称Graph Neural Networks: Foundations, Frontiers, and Applications读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0387931<br><br> <br><br>在前面 发表于 2025-3-22 00:05:26
http://reply.papertrans.cn/39/3880/387931/387931_2.png船员 发表于 2025-3-22 01:39:44
http://reply.papertrans.cn/39/3880/387931/387931_3.pngLasting 发表于 2025-3-22 08:14:33
The Expressive Power of Graph Neural Networkshniques to overcome these limitations, such as injecting random attributes, injecting deterministic distance attributes, and building higher-order GNNs. We will present the key insights of these techniques and highlight their advantages and disadvantages.FOLD 发表于 2025-3-22 11:44:44
http://reply.papertrans.cn/39/3880/387931/387931_5.png一大群 发表于 2025-3-22 14:27:23
Graph Neural Networks: Graph Transformationegories, namely node-level transformation, edge-level transformation, node-edge co-transformation, as well as other graph-involved transformations (e.g., sequenceto- graph transformation and context-to-graph transformation), which are discussed in Section 12.2 to Section 12.5, respectively. In each一大群 发表于 2025-3-22 18:36:06
http://reply.papertrans.cn/39/3880/387931/387931_7.png独白 发表于 2025-3-22 21:44:06
http://reply.papertrans.cn/39/3880/387931/387931_8.pngLARK 发表于 2025-3-23 01:49:31
http://reply.papertrans.cn/39/3880/387931/387931_9.pngHarness 发表于 2025-3-23 06:23:30
https://doi.org/10.1007/978-3-662-36442-0hniques to overcome these limitations, such as injecting random attributes, injecting deterministic distance attributes, and building higher-order GNNs. We will present the key insights of these techniques and highlight their advantages and disadvantages.