calumniate 发表于 2025-3-25 07:02:49

http://reply.papertrans.cn/39/3880/387931/387931_21.png

前面 发表于 2025-3-25 09:48:14

https://doi.org/10.1007/978-3-662-28408-7lecular property prediction, cancer classification, fraud detection, or knowledge graph reasoning. With the increasing number of GNN models deployed in scientific applications, safety-critical environments, or decision-making contexts involving humans, it is crucial to ensure their reliability. In t

MELON 发表于 2025-3-25 14:32:32

Mikroskopie und Chemie am Krankenbettpter gives an overview of GNNs for graph classification, i.e., GNNs that learn a graphlevel output. Since GNNs compute node-level representations, pooling layers, i.e., layers that learn graph-level representations from node-level representations, are crucial components for successful graph classifi

个人长篇演说 发表于 2025-3-25 19:20:09

Mikroskopie und Chemie am Krankenbett widely used in social networks, citation networks, biological networks, recommender systems, and security, etc. Traditional link prediction methods rely on heuristic node similarity scores, latent embeddings of nodes, or explicit node features. Graph neural network (GNN), as a powerful tool for joi

同来核对 发表于 2025-3-25 22:33:34

Mikroskopie und Chemie am Krankenbettl. Then we introduce several representative modern graph generative models that leverage deep learning techniques like graph neural networks, variational auto-encoders, deep auto-regressive models, and generative adversarial networks. At last, we conclude the chapter with a discussion on potential f

Coeval 发表于 2025-3-26 00:20:40

http://reply.papertrans.cn/39/3880/387931/387931_26.png

腐蚀 发表于 2025-3-26 06:29:08

http://reply.papertrans.cn/39/3880/387931/387931_27.png

CERE 发表于 2025-3-26 11:35:52

http://reply.papertrans.cn/39/3880/387931/387931_28.png

Fracture 发表于 2025-3-26 14:40:53

http://reply.papertrans.cn/39/3880/387931/387931_29.png

Moderate 发表于 2025-3-26 19:41:03

http://reply.papertrans.cn/39/3880/387931/387931_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: ;