calumniate
发表于 2025-3-25 07:02:49
http://reply.papertrans.cn/39/3880/387931/387931_21.png
前面
发表于 2025-3-25 09:48:14
https://doi.org/10.1007/978-3-662-28408-7lecular property prediction, cancer classification, fraud detection, or knowledge graph reasoning. With the increasing number of GNN models deployed in scientific applications, safety-critical environments, or decision-making contexts involving humans, it is crucial to ensure their reliability. In t
MELON
发表于 2025-3-25 14:32:32
Mikroskopie und Chemie am Krankenbettpter gives an overview of GNNs for graph classification, i.e., GNNs that learn a graphlevel output. Since GNNs compute node-level representations, pooling layers, i.e., layers that learn graph-level representations from node-level representations, are crucial components for successful graph classifi
个人长篇演说
发表于 2025-3-25 19:20:09
Mikroskopie und Chemie am Krankenbett widely used in social networks, citation networks, biological networks, recommender systems, and security, etc. Traditional link prediction methods rely on heuristic node similarity scores, latent embeddings of nodes, or explicit node features. Graph neural network (GNN), as a powerful tool for joi
同来核对
发表于 2025-3-25 22:33:34
Mikroskopie und Chemie am Krankenbettl. Then we introduce several representative modern graph generative models that leverage deep learning techniques like graph neural networks, variational auto-encoders, deep auto-regressive models, and generative adversarial networks. At last, we conclude the chapter with a discussion on potential f
Coeval
发表于 2025-3-26 00:20:40
http://reply.papertrans.cn/39/3880/387931/387931_26.png
腐蚀
发表于 2025-3-26 06:29:08
http://reply.papertrans.cn/39/3880/387931/387931_27.png
CERE
发表于 2025-3-26 11:35:52
http://reply.papertrans.cn/39/3880/387931/387931_28.png
Fracture
发表于 2025-3-26 14:40:53
http://reply.papertrans.cn/39/3880/387931/387931_29.png
Moderate
发表于 2025-3-26 19:41:03
http://reply.papertrans.cn/39/3880/387931/387931_30.png