使无罪 发表于 2025-3-21 16:12:19
书目名称Geometry of Lie Groups影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0383814<br><br> <br><br>书目名称Geometry of Lie Groups读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0383814<br><br> <br><br>良心 发表于 2025-3-21 20:58:29
http://reply.papertrans.cn/39/3839/383814/383814_2.pngFRONT 发表于 2025-3-22 03:04:27
Euclidean, Pseudo-Euclidean, Conformal and Pseudoconformal Geometries, . = .... of this space by itself is a positive definite quadratic form .. = ......, this space is also called a .. In . we have seen that the space .. also satisfies the axioms ..1° – 3° of a metric space.Sedative 发表于 2025-3-22 05:25:43
http://reply.papertrans.cn/39/3839/383814/383814_4.png男学院 发表于 2025-3-22 10:14:59
http://reply.papertrans.cn/39/3839/383814/383814_5.pngsterilization 发表于 2025-3-22 13:07:49
Symplectic and Quasisymplectic Geometries,figures in the space ... In . we have also seen that, besides hyperquadrics, in .. there are cosymmetry figures of an other kind: linear complexes of lines. The space .. in which a linear complex of lines is given is said to be a . and is denoted by ... The linear complex determining this space is csterilization 发表于 2025-3-22 19:03:59
http://reply.papertrans.cn/39/3839/383814/383814_7.png嘲笑 发表于 2025-3-22 21:12:57
spaces are geometries of simple Lie groups of classes An and en. contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numer978-1-4419-4769-7978-1-4757-5325-7cunning 发表于 2025-3-23 01:39:18
http://reply.papertrans.cn/39/3839/383814/383814_9.pngFLAX 发表于 2025-3-23 05:56:23
http://reply.papertrans.cn/39/3839/383814/383814_10.png