Flexible 发表于 2025-3-21 19:13:25

书目名称Geometry of Cauchy-Riemann Submanifolds影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383799<br><br>        <br><br>书目名称Geometry of Cauchy-Riemann Submanifolds读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383799<br><br>        <br><br>

最高点 发表于 2025-3-21 23:37:19

http://reply.papertrans.cn/39/3838/383799/383799_2.png

金桌活画面 发表于 2025-3-22 00:44:04

Book 2016verview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike..

慌张 发表于 2025-3-22 06:42:16

http://reply.papertrans.cn/39/3838/383799/383799_4.png

为现场 发表于 2025-3-22 12:48:50

http://reply.papertrans.cn/39/3838/383799/383799_5.png

Deference 发表于 2025-3-22 15:34:39

http://reply.papertrans.cn/39/3838/383799/383799_6.png

Deference 发表于 2025-3-22 19:24:31

http://reply.papertrans.cn/39/3838/383799/383799_7.png

Assemble 发表于 2025-3-22 21:52:44

http://reply.papertrans.cn/39/3838/383799/383799_8.png

摇曳的微光 发表于 2025-3-23 01:23:31

Submanifold Theory in Holomorphic Statistical Manifolds,uation. We naturally have various dualistic geometric objects on it. In this article, the basics for statistical submanifolds in holomorphic statistical manifolds are given. We define the sectional curvature for a statistical structure, and study CR-submanifolds in a holomorphic statistical manifold

Acquired 发表于 2025-3-23 08:46:53

http://reply.papertrans.cn/39/3838/383799/383799_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing