CANTO 发表于 2025-3-21 17:50:29
书目名称Geometry and Dynamics of Groups and Spaces影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383767<br><br> <br><br>书目名称Geometry and Dynamics of Groups and Spaces读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383767<br><br> <br><br>破布 发表于 2025-3-21 23:57:58
Geometry and Dynamics of Groups and Spaces978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505X哎呦 发表于 2025-3-22 00:39:05
0743-1643 Overview: Contributions by many prominent mathematicians.Provides an extensive survey on Kleinian groups in higher dimensions.Contains an unpublished book "Analytic Topology of Groups, Actions, Strings and Vari978-3-7643-8608-5Series ISSN 0743-1643 Series E-ISSN 2296-505Xcatagen 发表于 2025-3-22 04:40:42
http://reply.papertrans.cn/39/3838/383767/383767_4.png中和 发表于 2025-3-22 11:01:00
,Meßinstrumente für Strom und Spannung,operator acting on the total space . of the tangent bundle .. This construction is parallel to the deformation of the de Rham Hodge operator we had obtained in a previous work. If . is complex and Kähler, we produce this way a deformation of the Hodge theory of the corresponding Dolbeault complex..BCantankerous 发表于 2025-3-22 12:58:58
Einführung in die Elektrizitätslehree then construct inner cohomomorphism objects in their categories (and categories of algebras over them). We argue that they provide an approach to symmetry and moduli objects in non-commutative geometries based upon these “ring-like” structures. We give a unified axiomatic treatment of generalizedCantankerous 发表于 2025-3-22 20:16:04
,Mechanismus der Leitungsströme,amples and counterexamples produced via the (.)-techniques in every of the following categories: (i) probability preserving actions, (ii) infinite measure preserving actions, (iii) non-singular actions (Krieger’s type .).Bmd955 发表于 2025-3-23 00:37:11
,Mechanismus der Leitungsströme,Fel’shtyn and Hill [.] conjectured that if . is injective, then .(.) is infinite. In this paper, we show that the conjecture holds for the Baumslag-Solitar groups .(.), where either |.| or |.| is greater than 1 and |.| ≠ |.|. We also show that in the cases where |.| = |.| ή 1 or . = −1 the conjecturindifferent 发表于 2025-3-23 02:02:51
http://reply.papertrans.cn/39/3838/383767/383767_9.pngLigneous 发表于 2025-3-23 09:11:37
http://reply.papertrans.cn/39/3838/383767/383767_10.png