即将过时 发表于 2025-3-21 16:58:28
书目名称Geometric Quantization and Quantum Mechanics影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0383599<br><br> <br><br>书目名称Geometric Quantization and Quantum Mechanics读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0383599<br><br> <br><br>一美元 发表于 2025-3-21 22:18:51
Book 1980) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum meAirtight 发表于 2025-3-22 02:08:30
Introduction, a Hilbert space . of quantum states and defines a map . from a subset of the Poisson algebra to the space of symmetric operators on .. The domain of . consists of all “.-quantizable” functions. The definition of . requires some additional structure on the phase space. The functions which generate o机警 发表于 2025-3-22 05:19:28
http://reply.papertrans.cn/39/3836/383599/383599_4.png任命 发表于 2025-3-22 09:55:06
Representation Space,mplete set of commuting observables. In the process of quantization, however, one has only the classical phase space (X, ω) to work with, and one has to find a suitable classical counterpart of the notion of a complete set of commuting observables. A natural choice is a set of n = 1/2dim X functionsmajestic 发表于 2025-3-22 16:43:05
http://reply.papertrans.cn/39/3836/383599/383599_6.pngmajestic 发表于 2025-3-22 20:37:01
Other Representations,nctions gives rise to the Schrödinger representation. The momentum representation corresponds to the polarization spanned by the Hamiltonian vector fields of the momentum variables. The Blattner-Kostant-Sternberg kernel between these representations reduces to the Fourier transform. In this chapter,传染 发表于 2025-3-22 21:42:31
,Time-Dependent Schrödinger Equation,extended to evolution space yields an intrinsic quantum theory equivalent to that based on the time-dependent Schrödinger equation. We restrict our attention to the quantum mechanics of a single particle with a time-dependent potential.Eulogy 发表于 2025-3-23 04:14:41
Relativistic Dynamics in an Electromagnetic Field,re Y is the space-time manifold, Л: .Y → Y is the cotangent bundle projection, and .. Assuming that Y is orientable, and following the reasoning of Sec. 7.2 leading to a metaplectic structure on (.Ydθ.), we obtain a metaplectic structure on (.Y,ω.). The vertical distribution D on .Y taAqueous-Humor 发表于 2025-3-23 07:57:38
http://reply.papertrans.cn/39/3836/383599/383599_10.png