graphic 发表于 2025-3-21 18:05:59

书目名称Geometric Phases in Classical and Quantum Mechanics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383586<br><br>        <br><br>书目名称Geometric Phases in Classical and Quantum Mechanics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383586<br><br>        <br><br>

我还要背着他 发表于 2025-3-21 21:57:13

Textbook 2004adiabatic phase and its generalization are introduced. ...• Systematic exposition treats different geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...• Quantum mechanics is presented as classical Hamiltonian

牵索 发表于 2025-3-22 01:17:53

1544-9998 ifferent geometries (e.g., symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases. ...• Quantum mechanics is presented as classical Hamiltonian 978-1-4612-6475-0978-0-8176-8176-0Series ISSN 1544-9998 Series E-ISSN 2197-1846

摊位 发表于 2025-3-22 05:01:25

http://reply.papertrans.cn/39/3836/383586/383586_4.png

集中营 发表于 2025-3-22 10:41:54

https://doi.org/10.1007/978-3-540-75736-8unt dynamical effects but in the limit of infinitely slow changes. That is, the system is no longer static but its evolution is “infinitely slow.” A typical situation where one applies adiabatic ideas is when a physical system may be divided into two subsystems with completely different time scales:

invade 发表于 2025-3-22 14:39:35

http://reply.papertrans.cn/39/3836/383586/383586_6.png

invade 发表于 2025-3-22 17:14:38

http://reply.papertrans.cn/39/3836/383586/383586_7.png

形上升才刺激 发表于 2025-3-23 00:49:33

https://doi.org/10.1007/978-3-662-64457-7What could be a classical analog of the quantum geometric phase? An obvious candidate, which is even called a phase, is the phase of harmonic motion:

CHANT 发表于 2025-3-23 01:28:54

https://doi.org/10.1007/978-3-642-18600-4Suppose that (., Ω) is a symplectic manifold and let . be a Lie group acting from the left on .by canonical transformations. That is, there is a mapping . such that for any . ∈ ., . defined by Φ. = Φ(., ·), is a canonical transformation:

故意 发表于 2025-3-23 07:00:26

http://reply.papertrans.cn/39/3836/383586/383586_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Geometric Phases in Classical and Quantum Mechanics; Dariusz Chruściński,Andrzej Jamiołkowski Textbook 2004 Springer Science+Business Medi