小缺点 发表于 2025-3-21 17:31:50

书目名称Geometric Optimal Control影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383583<br><br>        <br><br>书目名称Geometric Optimal Control读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383583<br><br>        <br><br>

不能妥协 发表于 2025-3-21 22:23:22

The Pontryagin Maximum Principle: From Necessary Conditions to the Construction of an Optimal Solut= .(.), is linked in time to the application of a control function, . = .(.), by means of the solution to an ordinary differential equation whose right-hand side is shaped by the control. We now consider multidimensional systems in which both the state and the control variables no longer need to be

公理 发表于 2025-3-22 00:38:30

The High-Order Maximum Principle: From Approximations of Reachable Sets to High-Order Necessary Con setting. It is somewhat technical, but provides a uniform treatment of .. As a result, we not only prove Theorem 2.2.1, but obtain a general high-order version of the maximum principle (e.g., see ) from which we then derive the high-order necessary conditions for optimality that were introduce

Cervical-Spine 发表于 2025-3-22 08:14:53

The Method of Characteristics: A Geometric Approach to Sufficient Conditions for a Local Minimum,m the first-order necessary conditions for optimality of a controlled trajectory (aside from the much stronger minimum condition on the Hamiltonian that generalizes the Weierstrass condition of the calculus of variations). Clearly, as in ordinary calculus, first-order conditions by themselves are no

ATOPY 发表于 2025-3-22 10:10:15

http://reply.papertrans.cn/39/3836/383583/383583_5.png

capillaries 发表于 2025-3-22 14:36:20

http://reply.papertrans.cn/39/3836/383583/383583_6.png

capillaries 发表于 2025-3-22 17:08:18

http://reply.papertrans.cn/39/3836/383583/383583_7.png

朦胧 发表于 2025-3-22 21:39:57

,Ideenintensivierung und -fortführung,sfies the Hamilton–Jacobi–Bellman equation in regions where this flow covers an open set of the state injectively (.-space in the time-invariant case, respectively (., .)-space in the time-dependent case).

Ligneous 发表于 2025-3-23 03:52:22

Stephan Güsken,Gero Ritzenhöfer a point. If the reachable sets are known exactly, not only necessary conditions, but complete solutions can be obtained for related optimal control problems (e.g., the time-optimal control problem). In general, determining these sets is as difficult a problem as solving an optimal control problem.

圆桶 发表于 2025-3-23 09:32:54

http://reply.papertrans.cn/39/3836/383583/383583_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Geometric Optimal Control; Theory, Methods and Heinz Schättler,Urszula Ledzewicz Textbook 2012 Springer Science+Business Media, LLC 2012 L