轻舟 发表于 2025-3-21 16:19:31

书目名称Geometric Group Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0383517<br><br>        <br><br>书目名称Geometric Group Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0383517<br><br>        <br><br>

CREEK 发表于 2025-3-21 20:22:48

http://reply.papertrans.cn/39/3836/383517/383517_2.png

无表情 发表于 2025-3-22 03:41:08

http://reply.papertrans.cn/39/3836/383517/383517_3.png

左右连贯 发表于 2025-3-22 04:59:43

http://reply.papertrans.cn/39/3836/383517/383517_4.png

Factual 发表于 2025-3-22 09:20:17

http://reply.papertrans.cn/39/3836/383517/383517_5.png

MUTE 发表于 2025-3-22 15:04:16

Drought Stress Tolerance in Plants, Vol 1Groups are an abstract concept from algebra, formalising the study of symmetries of various mathematical objects.

MUTE 发表于 2025-3-22 17:06:44

https://doi.org/10.1007/b110045A fundamental question of geometric group theory is how groups can be viewed as geometric objects; one way to view a (finitely generated) group as a geometric object is via Cayley graphs:

朦胧 发表于 2025-3-23 00:06:10

https://doi.org/10.1007/978-3-642-58474-9The first quasi-isometry invariant we discuss in detail is the growth type. We essentially measure the “volume” of balls in a given finitely generated group and study the asymptotic behaviour when the radius tends to infinity.

recession 发表于 2025-3-23 03:31:08

Werner Baumann,Bettina Herberg-LiedtkeIn the universe of groups (Figure 1.2), on the side opposite to Abelian, nilpotent, solvable, and amenable groups, we find free groups, and then further out, negatively curved groups. This chapter is devoted to negatively curved groups.

Original 发表于 2025-3-23 05:50:35

http://reply.papertrans.cn/39/3836/383517/383517_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Geometric Group Theory; An Introduction Clara Löh Textbook 2017 Springer International Publishing AG 2017 MSC 2010 20F65 20F67 20F69 20F05