Tamoxifen 发表于 2025-3-21 16:38:14
书目名称Geodesic Flows影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0383098<br><br> <br><br>书目名称Geodesic Flows读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0383098<br><br> <br><br>ACME 发表于 2025-3-21 21:31:04
,Die Molybdän- und Vanadinstähle,In this chapter we introduce the counting functions and we relate them to the topological entropy ..(.) of the geodesic flow of ..CANT 发表于 2025-3-22 04:27:53
Heinz Ismar,Günther Lange,Wilhelm KrelleIn this chapter we present a proof of Mañé’s formula for geodesic flows and convex billiards. The proof rests on the twist property of the vertical subbundle that we described in Chapter 2, Pesin’s theory which enters via Przytycki’s inequality and a very clever change of variables which is useful also in other situations (cf. Proposition 4.8).帐单 发表于 2025-3-22 07:14:12
http://reply.papertrans.cn/39/3831/383098/383098_4.png预测 发表于 2025-3-22 09:02:12
http://reply.papertrans.cn/39/3831/383098/383098_5.pngLedger 发表于 2025-3-22 14:12:33
,Mañé’s Formula for Geodesic Flows and Convex Billiards,In this chapter we present a proof of Mañé’s formula for geodesic flows and convex billiards. The proof rests on the twist property of the vertical subbundle that we described in Chapter 2, Pesin’s theory which enters via Przytycki’s inequality and a very clever change of variables which is useful also in other situations (cf. Proposition 4.8).Ledger 发表于 2025-3-22 20:34:04
http://reply.papertrans.cn/39/3831/383098/383098_7.pngmisshapen 发表于 2025-3-22 23:15:49
http://reply.papertrans.cn/39/3831/383098/383098_8.pngLiving-Will 发表于 2025-3-23 03:36:55
http://reply.papertrans.cn/39/3831/383098/383098_9.pngarchetype 发表于 2025-3-23 07:25:13
http://reply.papertrans.cn/39/3831/383098/383098_10.png