纪念性 发表于 2025-3-21 19:59:19

书目名称Generative Adversarial Networks for Image Generation影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0382342<br><br>        <br><br>书目名称Generative Adversarial Networks for Image Generation读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0382342<br><br>        <br><br>

恶臭 发表于 2025-3-21 23:08:46

Xudong Mao,Qing LiOffers an overview of the theoretical concepts and the current challenges of generative adversarial networks.Proposes advanced GAN image generation approaches with higher image quality and better trai

男生戴手铐 发表于 2025-3-22 04:02:54

http://reply.papertrans.cn/39/3824/382342/382342_3.png

转折点 发表于 2025-3-22 06:15:29

Godwell Nhamo,Kaitano Dube,David ChikodziHe et al. 2016), object detection (Ren et al. 2015), and segmentation (Long et al. 2015). Compared with these tasks in supervised learning, however, image generation, which belongs to unsupervised learning, may not achieve the desired performance. The target of image generation is to learn to draw p

SYN 发表于 2025-3-22 10:56:35

https://doi.org/10.1007/978-3-0348-8005-3: image-to-image translation, unsupervised domain adaptation, and GANs for security. One type of GANs application is for tasks that require high-quality images, such as image-to-image translation. To improve the output image quality, a discriminator is introduced to judge whether the output images a

Heart-Attack 发表于 2025-3-22 13:00:25

http://reply.papertrans.cn/39/3824/382342/382342_6.png

Heart-Attack 发表于 2025-3-22 18:36:24

http://reply.papertrans.cn/39/3824/382342/382342_7.png

Expediency 发表于 2025-3-23 01:03:09

Generative Adversarial Networks (GANs),ject detection (Ren et al. 2015), and image segmentation (Long et al. 2015). These tasks all fall into the scope of supervised learning, which means that large amounts of labeled data are provided for the learning processes. Compared with supervised learning, however, unsupervised learning shows lit

wangle 发表于 2025-3-23 02:22:56

http://reply.papertrans.cn/39/3824/382342/382342_9.png

很像弓] 发表于 2025-3-23 06:31:24

http://reply.papertrans.cn/39/3824/382342/382342_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Generative Adversarial Networks for Image Generation; Xudong Mao,Qing Li Book 2021 Springer Nature Singapore Pte Ltd. 2021 Generative Adve