surmount 发表于 2025-3-25 07:13:08
http://reply.papertrans.cn/39/3823/382205/382205_21.png障碍 发表于 2025-3-25 07:33:13
http://reply.papertrans.cn/39/3823/382205/382205_22.pngAsparagus 发表于 2025-3-25 13:56:16
http://reply.papertrans.cn/39/3823/382205/382205_23.pngFelicitous 发表于 2025-3-25 18:49:38
The Schwartz-Sobolev Theory of Distributions,tance ., of . from the origin, is . = |.| = (. + . + ... + .).. Let . be an .-tuple of nonnegative integers, . = (., .,..., .), the so-called . of order .; then we define . and . where . = ∂/∂., . = 1, 2,..., .. For the one-dimensional case . reduces to .. Furthermore, if any component of . is zeroincredulity 发表于 2025-3-25 21:02:28
http://reply.papertrans.cn/39/3823/382205/382205_25.pngAffiliation 发表于 2025-3-26 01:58:32
http://reply.papertrans.cn/39/3823/382205/382205_26.pnglandmark 发表于 2025-3-26 04:42:05
http://reply.papertrans.cn/39/3823/382205/382205_27.pngCOLON 发表于 2025-3-26 08:41:28
Direct Products and Convolutions of Distributions,spectively. Then a point in the Cartesian product . = . × . is (.) = (.,..., ., .,..., .). Furthermore, let us denote by ., ., and .the spaces of test functions with compact support in ., ., and ., respectively. When . (.) and .(.) are locally integrable functions in the spaces . and ., then the funlacrimal-gland 发表于 2025-3-26 16:03:19
The Laplace Transform,is variable in this chapter. Let .(.) be a complex-valued function of the real variable . such that .(.). is abolutely integrable over 0 < . < ∞, where . is a real number. Then the Laplace transform of .(.), . ≥ 0, is defined as . where . = . + .. The Laplace transform defined by (1) has the followi变白 发表于 2025-3-26 19:28:21
http://reply.papertrans.cn/39/3823/382205/382205_30.png