surmount 发表于 2025-3-25 07:13:08

http://reply.papertrans.cn/39/3823/382205/382205_21.png

障碍 发表于 2025-3-25 07:33:13

http://reply.papertrans.cn/39/3823/382205/382205_22.png

Asparagus 发表于 2025-3-25 13:56:16

http://reply.papertrans.cn/39/3823/382205/382205_23.png

Felicitous 发表于 2025-3-25 18:49:38

The Schwartz-Sobolev Theory of Distributions,tance ., of . from the origin, is . = |.| = (. + . + ... + .).. Let . be an .-tuple of nonnegative integers, . = (., .,..., .), the so-called . of order .; then we define . and         . where . = ∂/∂., . = 1, 2,..., .. For the one-dimensional case . reduces to .. Furthermore, if any component of . is zero

incredulity 发表于 2025-3-25 21:02:28

http://reply.papertrans.cn/39/3823/382205/382205_25.png

Affiliation 发表于 2025-3-26 01:58:32

http://reply.papertrans.cn/39/3823/382205/382205_26.png

landmark 发表于 2025-3-26 04:42:05

http://reply.papertrans.cn/39/3823/382205/382205_27.png

COLON 发表于 2025-3-26 08:41:28

Direct Products and Convolutions of Distributions,spectively. Then a point in the Cartesian product . = . × . is (.) = (.,..., ., .,..., .). Furthermore, let us denote by ., ., and .the spaces of test functions with compact support in ., ., and ., respectively. When . (.) and .(.) are locally integrable functions in the spaces . and ., then the fun

lacrimal-gland 发表于 2025-3-26 16:03:19

The Laplace Transform,is variable in this chapter. Let .(.) be a complex-valued function of the real variable . such that .(.). is abolutely integrable over 0 < . < ∞, where . is a real number. Then the Laplace transform of .(.), . ≥ 0, is defined as . where . = . + .. The Laplace transform defined by (1) has the followi

变白 发表于 2025-3-26 19:28:21

http://reply.papertrans.cn/39/3823/382205/382205_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Generalized Functions Theory and Technique; Theory and Technique Ram P. Kanwal Book 19982nd edition Birkhäuser Boston 1998 Boundary value p