Mottled 发表于 2025-3-21 19:18:22

书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0380980<br><br>        <br><br>书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0380980<br><br>        <br><br>

Credence 发表于 2025-3-21 22:37:09

https://doi.org/10.1007/978-3-658-23264-1 . and five and divided by .. These two views are worth consideration. Then, (for the Moon), compute the . and apply the corrections of . and .. Then compute the . for the Sun. Compute and apply the correction of . for both the Sun and the Moon. Ascertain also the distance, at the required time, between the centres of the solar and lunar spheres.

Loathe 发表于 2025-3-22 01:35:18

http://reply.papertrans.cn/39/3810/380980/380980_3.png

Immortal 发表于 2025-3-22 04:36:37

http://reply.papertrans.cn/39/3810/380980/380980_4.png

成绩上升 发表于 2025-3-22 11:29:29

http://reply.papertrans.cn/39/3810/380980/380980_5.png

Cholesterol 发表于 2025-3-22 16:21:15

Earth and Celestial Spheresr secondaries, which are used as the reference circles for describing the location of a celestial object using different co-ordinates. Finally, there is an elaborate discussion on the determination of the declination of a celestial object with latitude.

Cholesterol 发表于 2025-3-22 20:03:08

http://reply.papertrans.cn/39/3810/380980/380980_7.png

progestin 发表于 2025-3-22 21:55:48

Computation of Planetsime period, then . where . is a constant. Given ., the radius of the planetary orbit is determined, if the time period of a planet is known. The term . refers to the number of complete revolutions made by the planet in a . consisting of 43,20,000 years. This period is also called a . and consists of four parts namely ., ., . and ..

fallible 发表于 2025-3-23 05:17:16

Eclipse longitudes are the same, it is the mid-eclipse. Now, we had.where, we approximate . by ., the true distance from the centre of the Earth in the denominator (essentially ignoring the higher order terms in .).

Venules 发表于 2025-3-23 05:58:25

Epilogueand cosine functions and also developed fast convergent approximations to them. Here, we shall discuss how the Kerala School also made equally significant discoveries in astronomy, in particular, planetary theory.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva; Volume II - Astronom K. V. Sarma,K. Ramasubramanian,M. S. Sriram Boo