出租车 发表于 2025-3-21 16:20:09
书目名称Gauge Theory and Symplectic Geometry影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0380941<br><br> <br><br>书目名称Gauge Theory and Symplectic Geometry读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0380941<br><br> <br><br>degradation 发表于 2025-3-21 21:29:34
Frobenius manifolds,pects which have a symplectic flavour, including Hamiltonian flows on coadjoint orbits, Poisson structures on loop spaces, and the symplectic geometry of flat connections on a punctured sphere. A major theme is to study the problem of solving the differential equations for a Frobenius manifold. Thes隐藏 发表于 2025-3-22 03:23:28
http://reply.papertrans.cn/39/3810/380941/380941_3.png流眼泪 发表于 2025-3-22 06:08:01
http://reply.papertrans.cn/39/3810/380941/380941_4.pngextinct 发表于 2025-3-22 11:50:19
http://reply.papertrans.cn/39/3810/380941/380941_5.pngBOOR 发表于 2025-3-22 16:05:49
http://reply.papertrans.cn/39/3810/380941/380941_6.pngBOOR 发表于 2025-3-22 18:51:44
Investment and Australian Economic Growth,pects which have a symplectic flavour, including Hamiltonian flows on coadjoint orbits, Poisson structures on loop spaces, and the symplectic geometry of flat connections on a punctured sphere. A major theme is to study the problem of solving the differential equations for a Frobenius manifold. ThesLATHE 发表于 2025-3-22 22:49:21
http://reply.papertrans.cn/39/3810/380941/380941_8.pngMENT 发表于 2025-3-23 01:28:42
http://reply.papertrans.cn/39/3810/380941/380941_9.png无法治愈 发表于 2025-3-23 07:48:01
https://doi.org/10.1007/978-3-031-45186-7n equations counts .-holomorphic curves in a somewhat new way. The “standard” theory concerns itself with moduli spaces of connected curves, and gives rise to Gromov-Witten invariants: see for example, McDuff—Salamon , Ruan—Tian . However, Taubes’s curves arise as zero sets of sections a