fundoplication 发表于 2025-3-21 17:45:03

书目名称Galois Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0380420<br><br>        <br><br>书目名称Galois Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0380420<br><br>        <br><br>

FLAX 发表于 2025-3-21 22:00:32

Pragmatism and the Value of Truth,We begin by defining the objects we will be studying.

Albinism 发表于 2025-3-22 02:23:12

Regional Markets and Trade RoutesWe now apply our general theory to the case of symmetric functions. We let . be an arbitrary field and set .(.,⋯, .), the field of rational functions in the variables .,⋯, .. Then the symmetric group . acts on . by permuting .,⋯,

Creatinine-Test 发表于 2025-3-22 05:40:38

Air Charter and the Warsaw ConventionIn this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.

heckle 发表于 2025-3-22 12:05:57

http://reply.papertrans.cn/39/3805/380420/380420_5.png

并入 发表于 2025-3-22 15:18:23

Introduction to Galois Theory,In this section we will proceed informally, neither proving our claims nor even carefully defining our terms. Nevertheless, as you will see in the course of reading this book, everything we say here is absolutely correct. We proceed in this way to show in advance what our main goals are, and hence to motivate our development.

并入 发表于 2025-3-22 17:53:56

http://reply.papertrans.cn/39/3805/380420/380420_7.png

起草 发表于 2025-3-22 23:48:39

http://reply.papertrans.cn/39/3805/380420/380420_8.png

态学 发表于 2025-3-23 01:21:46

Extensions of the field of Rational Numbers,In this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.

图表证明 发表于 2025-3-23 08:19:54

http://reply.papertrans.cn/39/3805/380420/380420_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Galois Theory; Steven H. Weintraub Textbook 20061st edition Springer-Verlag New York 2006 Galois theory.Group theory.algebra.finite field.