Disaster 发表于 2025-3-21 18:42:47
书目名称Galois Cohomology影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0380414<br><br> <br><br>书目名称Galois Cohomology读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0380414<br><br> <br><br>genesis 发表于 2025-3-21 21:38:42
http://reply.papertrans.cn/39/3805/380414/380414_2.pnghabitat 发表于 2025-3-22 04:08:49
https://doi.org/10.1007/978-981-32-9648-0A topological group which is the projective limit of finite groups, each given the discrete topology, is called a .. Such a group is compact and totally disconnected.habitat 发表于 2025-3-22 04:44:04
Giannis Karagiannis,Anastasios XepapadeasLet . be a field, and let . be a Galois extension of .. The Galois group Gal(.) of the extension . is a profinite group (cf. Chap. I, §1.1), and one can apply to it the methods and results of Chapter I; in particular, if Gal(.) acts on a discrete group ., the .(Gal(.) are well-defined (if . is not commutative, we assume that . = 0, 1).突变 发表于 2025-3-22 10:29:49
http://reply.papertrans.cn/39/3805/380414/380414_5.png内疚 发表于 2025-3-22 13:32:49
http://reply.papertrans.cn/39/3805/380414/380414_6.png内疚 发表于 2025-3-22 19:36:01
http://reply.papertrans.cn/39/3805/380414/380414_7.pngpalliate 发表于 2025-3-22 22:39:58
978-3-642-63866-4Springer-Verlag Berlin Heidelberg 1997intoxicate 发表于 2025-3-23 01:47:54
Galois Cohomology978-3-642-59141-9Series ISSN 1439-7382 Series E-ISSN 2196-9922exigent 发表于 2025-3-23 07:44:44
https://doi.org/10.1007/978-3-642-59141-9algebra; algebraic geometry; group theory; number theory; algebraic group; algebraic number field; cohomol