magenta 发表于 2025-3-25 06:00:20

http://reply.papertrans.cn/33/3204/320362/320362_21.png

同音 发表于 2025-3-25 10:37:26

https://doi.org/10.1007/978-3-030-22598-8This entire chapter will be devoted to the proof of one major theorem:

follicle 发表于 2025-3-25 11:45:28

https://doi.org/10.1007/978-94-007-2004-6In this chapter I’ll show you that Solovay randomness is equivalent to strong Chaitin randomness. Recall that an infinite binary sequence . is strong Chaitin random iff (.(.), the complexity of its .-bit prefix .) − . goes to infinity as . increases. I’ll break the proof into two parts.

柏树 发表于 2025-3-25 19:02:45

https://doi.org/10.1007/978-3-540-79436-3A lot remains to be done! Hopefully this is just the beginning of AIT! The higher you go, the more mountains you can see to climb!

Seminar 发表于 2025-3-25 20:09:20

http://reply.papertrans.cn/33/3204/320362/320362_25.png

largesse 发表于 2025-3-26 02:09:58

http://reply.papertrans.cn/33/3204/320362/320362_26.png

委派 发表于 2025-3-26 05:47:05

A self-delimiting Turing machine considered as a set of (program, output) pairs is just one of many possible self-delimiting binary computers . Each such . can be simulated by . by adding a LISP prefix σ.

水獭 发表于 2025-3-26 08:56:15

The connection between program-size complexity and algorithmic probability: ,=-log,+,(1). Occam’s raThe first half of the main theorem of this chapter is trivial:.therefore

Asymptomatic 发表于 2025-3-26 13:58:21

http://reply.papertrans.cn/33/3204/320362/320362_29.png

杂役 发表于 2025-3-26 18:41:51

http://reply.papertrans.cn/33/3204/320362/320362_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Exploring RANDOMNESS; Gregory J. Chaitin Book 2001 Springer-Verlag London 2001 LISP.Randomness.Ringe.Turing machine.algorithms.complexity.