令人不愉快 发表于 2025-3-21 18:15:20
书目名称Extrinsic Geometry of Foliations影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0320104<br><br> <br><br>书目名称Extrinsic Geometry of Foliations读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0320104<br><br> <br><br>Eosinophils 发表于 2025-3-21 21:38:27
http://reply.papertrans.cn/33/3202/320104/320104_2.pngconcubine 发表于 2025-3-22 03:14:16
Rosa Muñoz-Luna,Lidia Tailleferture of a given foliation with respect to some Riemannian metric. The particular case of this quantity being identically zero (tautness) has been described separately. In the codimension-one case, the only obstructions for a scalar function to be the mean curvature of a foliation arise from Stokes’热情赞扬 发表于 2025-3-22 07:29:17
https://doi.org/10.1007/978-94-009-2177-1ntal question (similar to the question on existence of canonical metrics on a manifold) reads as: .? Our goal here is to examine the actions on a manifold for different types of variations. Apart from varying among all metrics, we also deal with the case when the varying metric remains fixed along t欲望小妹 发表于 2025-3-22 10:42:11
Vladimir Rovenski,Paweł WalczakProblems of prescribing the extrinsic geometry and curvature of foliations are central to the book.Presents the state of the art in geometric and analytical theory of foliations.Designed for newcomersdainty 发表于 2025-3-22 15:49:50
http://reply.papertrans.cn/33/3202/320104/320104_6.pngdainty 发表于 2025-3-22 18:34:05
http://reply.papertrans.cn/33/3202/320104/320104_7.pngforeign 发表于 2025-3-22 23:04:00
Extrinsic Geometry of Foliations978-3-030-70067-6Series ISSN 0743-1643 Series E-ISSN 2296-505X调整校对 发表于 2025-3-23 03:42:36
https://doi.org/10.1007/978-3-030-96486-3By . we mean the evolution of a geometric structure on a manifold under a differential equation, usually associated with curvature. These correspond to dynamical systems in the infinite-dimensional space of all appropriate geometric structures on a given manifold.里程碑 发表于 2025-3-23 08:10:14
Extrinsic Geometric Flows,By . we mean the evolution of a geometric structure on a manifold under a differential equation, usually associated with curvature. These correspond to dynamical systems in the infinite-dimensional space of all appropriate geometric structures on a given manifold.