无缘无故 发表于 2025-3-21 17:06:13

书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0319285<br><br>        <br><br>书目名称Explainable AI: Interpreting, Explaining and Visualizing Deep Learning读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0319285<br><br>        <br><br>

metropolitan 发表于 2025-3-21 23:18:22

http://reply.papertrans.cn/32/3193/319285/319285_2.png

无关紧要 发表于 2025-3-22 03:21:50

http://reply.papertrans.cn/32/3193/319285/319285_3.png

Omniscient 发表于 2025-3-22 06:54:58

Understanding Neural Networks via Feature Visualization: A Surveys in machine learning enable a family of methods to synthesize preferred stimuli that cause a neuron in an artificial or biological brain to fire strongly. Those methods are known as Activation Maximization (AM) [.] or Feature Visualization via Optimization. In this chapter, we (1) review existing A

压碎 发表于 2025-3-22 10:20:28

http://reply.papertrans.cn/32/3193/319285/319285_5.png

Indict 发表于 2025-3-22 12:54:50

http://reply.papertrans.cn/32/3193/319285/319285_6.png

Indict 发表于 2025-3-22 18:43:36

http://reply.papertrans.cn/32/3193/319285/319285_7.png

spinal-stenosis 发表于 2025-3-22 21:30:23

Explanations for Attributing Deep Neural Network Predictionsalthcare decision-making, there is a great need for . and . . of “why” an algorithm is making a certain prediction. In this chapter, we introduce 1. Meta-Predictors as Explanations, a principled framework for learning explanations for any black box algorithm, and 2. Meaningful Perturbations, an inst

Insensate 发表于 2025-3-23 05:21:49

Gradient-Based Attribution Methodsile several methods have been proposed to explain network predictions, the definition itself of explanation is still debated. Moreover, only a few attempts to compare explanation methods from a theoretical perspective has been done. In this chapter, we discuss the theoretical properties of several a

Console 发表于 2025-3-23 08:40:29

http://reply.papertrans.cn/32/3193/319285/319285_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Wojciech Samek,Grégoire Montavon,Klaus-Robert Müll Book 2019 Sprin