从未沮丧 发表于 2025-3-21 17:38:28
书目名称Ergodic Theory and Semisimple Groups影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0314495<br><br> <br><br>书目名称Ergodic Theory and Semisimple Groups读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0314495<br><br> <br><br>amplitude 发表于 2025-3-21 22:03:26
http://reply.papertrans.cn/32/3145/314495/314495_2.pngVOK 发表于 2025-3-22 00:48:53
http://reply.papertrans.cn/32/3145/314495/314495_3.png知识分子 发表于 2025-3-22 05:21:31
http://reply.papertrans.cn/32/3145/314495/314495_4.png埋葬 发表于 2025-3-22 11:13:00
Christopher McElroy,Stefan Jennewein over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.Irksome 发表于 2025-3-22 15:08:46
Rigidity, over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.Irksome 发表于 2025-3-22 18:33:38
http://reply.papertrans.cn/32/3145/314495/314495_7.pngAqueous-Humor 发表于 2025-3-23 01:12:40
http://reply.papertrans.cn/32/3145/314495/314495_8.png铺子 发表于 2025-3-23 03:26:49
Monographs in Mathematicshttp://image.papertrans.cn/e/image/314495.jpgENDOW 发表于 2025-3-23 06:00:51
https://doi.org/10.1007/978-1-4684-9488-4Arithmetic; Identity; Lattice; algebra; ergodic theory; theorem