从未沮丧 发表于 2025-3-21 17:38:28

书目名称Ergodic Theory and Semisimple Groups影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0314495<br><br>        <br><br>书目名称Ergodic Theory and Semisimple Groups读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0314495<br><br>        <br><br>

amplitude 发表于 2025-3-21 22:03:26

http://reply.papertrans.cn/32/3145/314495/314495_2.png

VOK 发表于 2025-3-22 00:48:53

http://reply.papertrans.cn/32/3145/314495/314495_3.png

知识分子 发表于 2025-3-22 05:21:31

http://reply.papertrans.cn/32/3145/314495/314495_4.png

埋葬 发表于 2025-3-22 11:13:00

Christopher McElroy,Stefan Jennewein over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.

Irksome 发表于 2025-3-22 15:08:46

Rigidity, over .. If . is a connected semisimple Lie group then we can realize Ad(.) as a subgroup of finite index in the R-points of an R-group (Proposition 3.1.6). We then define R-rank(.) to be the R-rank of this algebraic group. Thus R-rank(.(n, R)) = ., the R-split abelian subgroup of maximal dimension being the diagonal matrices of determinant one.

Irksome 发表于 2025-3-22 18:33:38

http://reply.papertrans.cn/32/3145/314495/314495_7.png

Aqueous-Humor 发表于 2025-3-23 01:12:40

http://reply.papertrans.cn/32/3145/314495/314495_8.png

铺子 发表于 2025-3-23 03:26:49

Monographs in Mathematicshttp://image.papertrans.cn/e/image/314495.jpg

ENDOW 发表于 2025-3-23 06:00:51

https://doi.org/10.1007/978-1-4684-9488-4Arithmetic; Identity; Lattice; algebra; ergodic theory; theorem
页: [1] 2 3 4 5
查看完整版本: Titlebook: Ergodic Theory and Semisimple Groups; Robert J. Zimmer Book 1984 Springer Science+Business Media New York 1984 Arithmetic.Identity.Lattice