杀虫剂 发表于 2025-3-23 11:36:57

Aufarbeitungstechnik, eine ÜbersichtUsing the Hartman–Grobman theorem, we can show that a small perturbation . of a hyperbolic toral automorphism is conjugate to this automorphism. For such a transformation, all points are therefore nonwandering, and there exists a dense set of recurrent points.

Conscientious 发表于 2025-3-23 15:57:01

http://reply.papertrans.cn/32/3145/314489/314489_12.png

extract 发表于 2025-3-23 20:45:28

http://reply.papertrans.cn/32/3145/314489/314489_13.png

obtuse 发表于 2025-3-24 01:12:43

http://reply.papertrans.cn/32/3145/314489/314489_14.png

极力证明 发表于 2025-3-24 05:07:04

http://reply.papertrans.cn/32/3145/314489/314489_15.png

Gum-Disease 发表于 2025-3-24 09:16:23

http://reply.papertrans.cn/32/3145/314489/314489_16.png

ECG769 发表于 2025-3-24 10:41:15

http://reply.papertrans.cn/32/3145/314489/314489_17.png

用手捏 发表于 2025-3-24 14:58:22

NonwanderingConsider a dynamical system given by a locally compact metric space . and a continuous map .: . → .. A point in . is wandering if it admits a neighborhood that is disjoint from all of its iterates.

稀释前 发表于 2025-3-24 20:11:57

ConjugationLet . be a metric space, and let .: . → . be a continuous map. It is not in general possible to explicitly compute the iterates ..(.) in order to decide whether the individual orbits converge or diverge.

得罪 发表于 2025-3-25 03:11:42

http://reply.papertrans.cn/32/3145/314489/314489_20.png
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Ergodic Theory and Dynamical Systems; Yves Coudène Textbook 2016 Springer-Verlag London 2016 Ergodic theory.Dynamical systems.Hyperbolic d