EFFCT 发表于 2025-3-21 18:08:22

书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0309901<br><br>        <br><br>书目名称Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0309901<br><br>        <br><br>

maladorit 发表于 2025-3-21 20:27:26

http://reply.papertrans.cn/31/3100/309901/309901_2.png

pulse-pressure 发表于 2025-3-22 00:34:23

http://reply.papertrans.cn/31/3100/309901/309901_3.png

郊外 发表于 2025-3-22 05:48:13

http://reply.papertrans.cn/31/3100/309901/309901_4.png

讽刺滑稽戏剧 发表于 2025-3-22 11:04:04

Local and Global Endoscopy for GSp(4), 5.2, which is a special case of a global multiplicity formula conjectured by Arthur.We consider the symplectic group .(4) over an arbitrary totally real number field .. In the special case . = Q and for irreducible automorphic representations π with π. in the discrete series the proof of this theor

allude 发表于 2025-3-22 13:08:12

http://reply.papertrans.cn/31/3100/309901/309901_6.png

allude 发表于 2025-3-22 18:12:57

http://reply.papertrans.cn/31/3100/309901/309901_7.png

legitimate 发表于 2025-3-22 23:28:27

http://reply.papertrans.cn/31/3100/309901/309901_8.png

Offbeat 发表于 2025-3-23 01:34:08

Fundamental lemma (twisted case),wisted base change endoscopy. In fact, this is shown in this chapter for the unit elements of the Hecke algebras.Using global arguments involving the Selberg trace formula, it suffices to prove the fundamental lemma and twisted fundamental lemma in general assuming the fundamental lemma for unit ele

聋子 发表于 2025-3-23 05:55:44

Reduction to unit elements, case of twisted endoscopy, although formulated only for .′ = .(4) and base change in this chapter, holds for twisted endoscopy in greater generality. However, to avoid technical considerations, we restrict ourselves here to the special case. The general case will be considered elsewhere .
页: [1] 2 3 4 5
查看完整版本: Titlebook: Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds; Rainer Weissauer Book 2009 Springer-Verlag Berlin Heidelberg 2009 Ra