flourish 发表于 2025-3-23 13:11:12
Appendix on Galois cohomology,sider the category of reductive groups over F, whose morphisms are the group homomorphism G → H, which are defined over F. The Borovoi fundamental group π(.) is a functor from the category of reductive groups over . to the category of finitely generated Abelian groups with Γ. -action. The Borovoi fu渗入 发表于 2025-3-23 13:56:19
http://reply.papertrans.cn/31/3100/309901/309901_12.pngnutrients 发表于 2025-3-23 21:43:09
http://reply.papertrans.cn/31/3100/309901/309901_13.pngARENA 发表于 2025-3-23 23:23:51
http://reply.papertrans.cn/31/3100/309901/309901_14.pngVOC 发表于 2025-3-24 05:37:43
https://doi.org/10.1007/978-94-011-7364-3have a canonical isomorphism π(.) = π.(.) (algebraic fundamental group). In general, let . be the simply connected covering of the derived group . of .. Choose maximal .-tori . → . → .. Then π(.) = π(.)/.(π(.)).影响带来 发表于 2025-3-24 10:36:30
The Langlands-Shelstad transfer factor,obtained by Shelstad . For us this is crucial since it implicitly determines the relevant sign ε that appears in Corollary 4.1 to be ε = ?1 (via the theory of Whittaker models in Sect. 4.10 and some global multiplicity arguments).我吃花盘旋 发表于 2025-3-24 11:28:24
Fundamental lemma (twisted case),sed in the comparison of trace formulas in Chap. 3. This formula will be the clue to unravel the terms in the Kottwitz formula stated in Theorem 3.1 that appear in the form of the twisted orbital integrals TO.(φ.).Uncultured 发表于 2025-3-24 16:38:44
http://reply.papertrans.cn/31/3100/309901/309901_18.png使长胖 发表于 2025-3-24 20:31:10
http://reply.papertrans.cn/31/3100/309901/309901_19.pngIntrepid 发表于 2025-3-25 01:09:34
https://doi.org/10.1007/978-3-030-37375-7.(2n, .) be the group of symplectic similitudes. Hence, . ∈ .(.) iff .′. = λ(.) · . for a scalar λ(.) ∈ ., where. and where E denotes the unit matrix. Then . ∈ .(.) ⇐⇒ (.′). ∈ .(.) ⇐⇒ .′ ∈ .(.) and .′ = . = −. ∈ .(.). Let .(o.) = .(2n, o. ) denote the group of all unimodular symplectic similitudes.