cobble 发表于 2025-3-21 16:52:11
书目名称Elementary Topics in Differential Geometry影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0307430<br><br> <br><br>书目名称Elementary Topics in Differential Geometry读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0307430<br><br> <br><br>MIRE 发表于 2025-3-21 20:43:27
The Gauss Map,on .:. → ℝ.. associated with the vector field . by .(.) = (., .(.)), . ∈ ., actually maps . into the unit .-sphere S. ⊂ ℝ.. since ∥.(.)∥ = 1 for all . ∈ .. Thus, associated to each oriented .-surface . is a smooth map .: . → S.. called the .. . may be thought of as the map which assigns to each poinENNUI 发表于 2025-3-22 02:57:24
Geodesics, proccss of differentiation of vector fields and functions defined along parametrized curves. In order to allow the possibility that such vector fields and functions may take on different values at a point where a parametrized curve crosses itself, it is convenient to regard these fields and functioCoronation 发表于 2025-3-22 06:30:25
Parallel Transport,however, generally not tangent to .. We can, nevertheless, obtain a vector field tangent to . by projecting Ẋ(.) orthogonally onto .. for each . ∈ . (see Figure 8.1). This process of differentiating and then projecting onto the tangent space to . defines an operation with the same properties as diffGum-Disease 发表于 2025-3-22 10:31:07
http://reply.papertrans.cn/31/3075/307430/307430_5.png金桌活画面 发表于 2025-3-22 13:27:56
http://reply.papertrans.cn/31/3075/307430/307430_6.png金桌活画面 发表于 2025-3-22 20:06:03
Convex Surfaces,ee Figure 13.1). An oriented .-surface . is . at . ∈ . if there exists an open set . ⊂ ℝ.. containing . such that . ∩ . is contained either in . or in .. Thus a convex .-surface is necessarily convex at each of its points, but an .-surface convex at each point need not be a convex .-surface (see Figlanguid 发表于 2025-3-22 23:24:59
Parametrized Surfaces,ure . and (ii) define various integrals over .. We shall now carry out a similar program for .-surfaces (. > 1). It will turn out that oriented .-surfaces (even connected ones) in general admit only local parametrizations, but that will be adequate for our needs.湿润 发表于 2025-3-23 02:04:56
http://reply.papertrans.cn/31/3075/307430/307430_9.png阴郁 发表于 2025-3-23 06:50:14
The Exponential Map, We begin by using a technique of the calculus of variations analogous to the one we used in Chapter 18 to study minimal surfaces. Now, however, we shall vary parametrized curves rather than parametrized surfaces