Coenzyme 发表于 2025-3-21 17:19:27
书目名称Document Analysis and Recognition - ICDAR 2024影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0284812<br><br> <br><br>书目名称Document Analysis and Recognition - ICDAR 2024读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0284812<br><br> <br><br>规章 发表于 2025-3-21 22:43:00
http://reply.papertrans.cn/29/2849/284812/284812_2.png细节 发表于 2025-3-22 00:23:25
Document Specular Highlight Removal with Coarse-to-Fine Strategyetween the ground-truth and the CP-predicted image. Experimental results on four public benchmark images demonstrate that our method surpasses state-of-the-art methods in the task of highlight removal.WITH 发表于 2025-3-22 06:31:30
KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents0k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversitNutrient 发表于 2025-3-22 09:02:54
Context-Aware Confidence Estimation for Rejection in Handwritten Chinese Text Recognitionand binary geometric features. Experimental evaluations on the CASIA-HWDB and ICDAR2013 datasets demonstrate that our method can significantly improve the rejection performance in respect of low error rate at moderate rejection rate. The re-trained classifier, the linguistic context and the geometriCosmopolitan 发表于 2025-3-22 13:46:06
Radical Similarity Based Model Optimization and Post-correction for Chinese Character Recognitionhe potential error recognition results, offering a low-cost yet effective solution. Experimental results on different radical-based CCR models and datasets demonstrate the effectiveness and robustness of our proposed method.Cosmopolitan 发表于 2025-3-22 19:00:50
Puzzle Pieces Picker: Deciphering Ancient Chinese Characters with Radical Reconstruction promising insights, underscoring the potential and effectiveness of our approach in deciphering the intricacies of ancient Chinese scripts. Through this novel dataset and methodology, we aim to bridge the gap between traditional philology and modern document analysis techniques, offering new insighesculent 发表于 2025-3-22 22:04:12
http://reply.papertrans.cn/29/2849/284812/284812_8.png绊住 发表于 2025-3-23 05:04:50
GraphMLLM: A Graph-Based Multi-level Layout Language-Independent Model for Document Understandingmprove the performance of language-independent document pre-trained model. Experimental results show that compared with previous state-of-the-art methods, GraphMLLM yields higher performance on downstream visual information extraction (VIE) tasks after pre-training on less documents. Code and modelDirected 发表于 2025-3-23 07:40:20
EntityLayout: Entity-Level Pre-training Language Model for Semantic Entity Recognition and Relation ental results on public datasets FUNSD and CORD demonstrate that the proposed EntityLayout achieves competitive performance in SER and state-of-the-art performance in RE, i.e., SER F1 scores of 0.9108 and 0.9650, respectively, RE F1 scores of 0.8212 and 0.9898, respectively.