irritants 发表于 2025-3-21 18:18:13
书目名称Dependent Data in Social Sciences Research影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0284526<br><br> <br><br>书目名称Dependent Data in Social Sciences Research读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0284526<br><br> <br><br>一大块 发表于 2025-3-21 22:15:38
http://reply.papertrans.cn/29/2846/284526/284526_2.pngSLAG 发表于 2025-3-22 02:48:25
http://reply.papertrans.cn/29/2846/284526/284526_3.pngPACK 发表于 2025-3-22 05:44:33
http://reply.papertrans.cn/29/2846/284526/284526_4.png代替 发表于 2025-3-22 09:35:23
http://reply.papertrans.cn/29/2846/284526/284526_5.png失望昨天 发表于 2025-3-22 15:57:25
Exploration of Dependence Structures in Longitudinal Categorical Data with Ordinal Responsesrelationship with categorical covariates, the proposed approach consists of a set of SCCRAM-based strategies that take into account time dependence, data format, potential of asymmetric dependence, and model-free inference. The utility of the proposed method is demonstrated using two longitudinal ca失望昨天 发表于 2025-3-22 17:56:48
Bayesian Network for Discovering the Potential Causal Structure in Observational Dataht on the factors that drive observed patterns and phenomena, facilitating a clear understanding of the intricate web of relationships, enabling researchers and practitioners to derive meaningful insights, and making informed decisions based on a nuanced understanding of the causal mechanisms at plaMucosa 发表于 2025-3-23 00:39:35
http://reply.papertrans.cn/29/2846/284526/284526_8.png生来 发表于 2025-3-23 01:57:14
http://reply.papertrans.cn/29/2846/284526/284526_9.pngORE 发表于 2025-3-23 08:55:58
http://reply.papertrans.cn/29/2846/284526/284526_10.png