大破坏 发表于 2025-3-21 19:33:17
书目名称Database Systems for Advanced Applications影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0284468<br><br> <br><br>书目名称Database Systems for Advanced Applications读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0284468<br><br> <br><br>消极词汇 发表于 2025-3-21 23:12:36
http://reply.papertrans.cn/29/2845/284468/284468_2.png懦夫 发表于 2025-3-22 02:17:28
Higher-Order Graph Contrastive Learning for Recommendationom the original graph to enhance supervisory signals. Specifically, we construct two contrasting views: higher-order and general views. In the higher-order view, we devise a high-order symmetric contrastive scheme to better explore higher-order dependencies. For the general view, the objective is to植物群 发表于 2025-3-22 06:53:25
http://reply.papertrans.cn/29/2845/284468/284468_4.pngIndividual 发表于 2025-3-22 11:44:43
http://reply.papertrans.cn/29/2845/284468/284468_5.png转折点 发表于 2025-3-22 13:39:06
Multi-level Contrastive Learning on Weak Social Networks for Information Diffusion Predictionn. To facilitate user representation learning under sparse labels and insufficient features, we further propose self-supervised training specifically tailored for social networks with weak information. In the second stage, the cascade representations are learned using the multi-head self-attention n转折点 发表于 2025-3-22 17:17:11
BiasRec: A General Bias-Aware Social Recommendation Model initially constructs a bias matrix for each user and item, calculates bias scores, and removes them from the raw rating data. Subsequently, the debiased data is fed into a GNN to learn users’ genuine preferences. Last, it reasonably combines biases and preferences to make predictions. We performed生存环境 发表于 2025-3-23 01:01:38
http://reply.papertrans.cn/29/2845/284468/284468_8.png激怒某人 发表于 2025-3-23 03:12:28
http://reply.papertrans.cn/29/2845/284468/284468_9.png利用 发表于 2025-3-23 09:09:00
Learning Social Graph for Inactive User Recommendationring model training, which improves the construction of new edges for inactive users. Extensive experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58% on NDCG in inactive user recommendation. Our code is available at ..