GLAZE 发表于 2025-3-21 16:10:46
书目名称Domain Adaptation and Representation Transfer影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0282481<br><br> <br><br>书目名称Domain Adaptation and Representation Transfer读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0282481<br><br> <br><br>无效 发表于 2025-3-21 21:35:06
http://reply.papertrans.cn/29/2825/282481/282481_2.png拥护者 发表于 2025-3-22 00:37:18
http://reply.papertrans.cn/29/2825/282481/282481_3.pngROOF 发表于 2025-3-22 08:13:46
http://reply.papertrans.cn/29/2825/282481/282481_4.png发芽 发表于 2025-3-22 12:20:58
,Task-Agnostic Continual Hippocampus Segmentation for Smooth Population Shifts,adual population shifts. We propose ODEx, a holistic solution that combines out-of-distribution detection with continual learning techniques. Validation on two scenarios of hippocampus segmentation shows that our proposed method reliably maintains performance on earlier tasks without losing plasticity.Paradox 发表于 2025-3-22 15:13:03
Conference proceedings 2022orum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.. .Paradox 发表于 2025-3-22 17:48:15
0302-9743 scussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.. .978-3-031-16851-2978-3-031-16852-9Series ISSN 0302-9743 Series E-ISSN 1611-3349残忍 发表于 2025-3-23 00:54:11
http://reply.papertrans.cn/29/2825/282481/282481_8.pngjocular 发表于 2025-3-23 04:49:45
Conference proceedings 2022tion with MICCAI 2022, in September 2022. .DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learningImpugn 发表于 2025-3-23 06:01:49
,Unsupervised Site Adaptation by Intra-site Variability Alignment,and propose an . method that jointly aligns the intra-site data variability in the source and target sites while training the network on the labeled source site data. We applied our method to several medical MRI image segmentation tasks and show that it consistently outperforms state-of-the-art methods.