LEVEE 发表于 2025-3-21 16:09:03
书目名称Document Analysis and Recognition – ICDAR 2023 Workshops影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0282317<br><br> <br><br>书目名称Document Analysis and Recognition – ICDAR 2023 Workshops读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0282317<br><br> <br><br>B-cell 发表于 2025-3-21 20:17:56
Leveraging Knowledge Graph Embeddings to Enhance Contextual Representations for Relation Extractionpresentation. We conducted a series of experiments which revealed promising and very interesting results for our proposed approach. The obtained results demonstrated an outperformance of our method compared to context-based relation extraction models.Aesthete 发表于 2025-3-22 01:06:38
Extracting Key-Value Pairs in Business Documentstraction in business documents. Our approach is designed to be adaptable and requires minimal semantic and language-specific knowledge, making it suitable for a wide range of business documents. This flexibility allows our method to be easily applied to real-world scenarios, where documents may varyformula 发表于 2025-3-22 04:36:00
http://reply.papertrans.cn/29/2824/282317/282317_4.pngENDOW 发表于 2025-3-22 10:07:51
Subgraph-Induced Extraction Technique for Information (SETI) from Administrative Documentsraph level and compare the results with baselines on private as well as public datasets. Our model succeeds in improving recall and precision scores for some classes in our private dataset and produces comparable results for public datasets designed for Form Understanding and Information Extraction.斗争 发表于 2025-3-22 14:46:21
http://reply.papertrans.cn/29/2824/282317/282317_6.png斗争 发表于 2025-3-22 17:48:19
http://reply.papertrans.cn/29/2824/282317/282317_7.png狂热语言 发表于 2025-3-22 22:44:39
A Comparison of Demographic Attributes Detection from Handwriting Based on Traditional and Deep Learct the demographical attributes of writers. In the deep learning method, a Convolutional Neural Network model based on the ResNet architecture with a fully connected layer, followed by a softmax layer is used to provide probability scores to facilitate demographic information detection. To evaluate延期 发表于 2025-3-23 02:45:20
http://reply.papertrans.cn/29/2824/282317/282317_9.pngManifest 发表于 2025-3-23 08:13:25
http://reply.papertrans.cn/29/2824/282317/282317_10.png