irritants 发表于 2025-3-21 19:16:26

书目名称Diophantine Equations and Power Integral Bases影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0280541<br><br>        <br><br>书目名称Diophantine Equations and Power Integral Bases读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0280541<br><br>        <br><br>

浓缩 发表于 2025-3-21 21:39:06

Robert Fisch,Janko Gravner,David Griffeathcase 1, α,...,α. is an integral basis of ., called a .. Our main task is to develop algorithms for determining all generators α of power integral bases. As we shall see, this algorithmic problem is satisfactorily solved for lower degree number fields (especially for cubic and quartic fields) and the

genuine 发表于 2025-3-22 02:41:00

http://reply.papertrans.cn/29/2806/280541/280541_3.png

instill 发表于 2025-3-22 05:17:28

Robert Fisch,Janko Gravner,David Griffeathl see in the following chapters, various types of Thue equations play an essential role in the resolution of index form equations . We summarize the methods for the resolution of these equations in this chapter. We shall consider Thue equations (Section 3.1), inhomogeneous Thue equations (Sec

Finasteride 发表于 2025-3-22 11:14:23

Kenneth S. Alexander,Joseph C. Watkinsrties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sect

善于 发表于 2025-3-22 13:02:52

Spatial Linkages of the Chinese Economybles. The resolution of such an equation can yield a difficult problem. The main goal of this Chapter is to point out that in the quartic case the index form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equ

善于 发表于 2025-3-22 17:13:41

http://reply.papertrans.cn/29/2806/280541/280541_7.png

不易燃 发表于 2025-3-23 00:27:37

Visualizing Classic Chinese Literaturesituation. The algorithms for determining generators of relative power integral bases will be applied for finding generators of integral bases in higher degree fields having subfields. It is easy to see that if an element generates a power integral basis, then it also generates a relative power inte

BRAVE 发表于 2025-3-23 03:33:57

http://reply.papertrans.cn/29/2806/280541/280541_9.png

PACT 发表于 2025-3-23 07:05:30

http://reply.papertrans.cn/29/2806/280541/280541_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh�user Boston 2002 Algebraic Numb