去是公开
发表于 2025-3-21 16:22:53
书目名称Differential Privacy and Applications影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0278789<br><br> <br><br>书目名称Differential Privacy and Applications读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0278789<br><br> <br><br>
creatine-kinase
发表于 2025-3-21 20:38:34
https://doi.org/10.1007/978-3-031-56188-7 bound or sample complexity. But private learning frameworks can only deal with limited learning algorithms, while nearly all types of analysis algorithms can be implemented in a Laplace/exponential framework.
无节奏
发表于 2025-3-22 01:13:24
http://reply.papertrans.cn/28/2788/278789/278789_3.png
得意人
发表于 2025-3-22 05:06:11
Lisa Wiebesiek,Relebohile Moletsaner of queries is limited, as a large volume of noise will be introduced when the number of queries increases. A method called graph update method is then presented in this chapter to solve this serious problem. The key idea of the method is to transfer the query release problem into an iteration proc
PHAG
发表于 2025-3-22 10:56:05
Alexandra Budke,Kimberley Hindmarshms and utilize differential privacy to prevent the leaking of private information when releasing the dataset. A private tagging release algorithm is presented in this chapter to provide comprehensive privacy-preserving capability for individuals and maximizing the utility of the released dataset. Th
直觉好
发表于 2025-3-22 14:01:10
http://reply.papertrans.cn/28/2788/278789/278789_6.png
直觉好
发表于 2025-3-22 20:15:43
http://reply.papertrans.cn/28/2788/278789/278789_7.png
全等
发表于 2025-3-22 22:19:05
http://reply.papertrans.cn/28/2788/278789/278789_8.png
为现场
发表于 2025-3-23 03:23:46
http://reply.papertrans.cn/28/2788/278789/278789_9.png
considerable
发表于 2025-3-23 08:26:57
Differentially Private Deep Learning,uted Private SGD. Each of them is focusing on a particular deep learning algorithm and is dealing with those two challenges in different ways. Finally, this chapter shows several popular datasets that can be used in differentially private deep learning.