mountebank 发表于 2025-3-21 16:52:25

书目名称Differential Geometry and Lie Groups影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0278754<br><br>        <br><br>书目名称Differential Geometry and Lie Groups读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0278754<br><br>        <br><br>

burnish 发表于 2025-3-21 22:21:52

Introduction to Manifolds and Lie Groupsial structure, which means that the notion of tangent space makes sense at any point of the group. Furthermore, the tangent space at the identity happens to have some algebraic structure, that of a Lie algebra. Roughly speaking, the tangent space at the identity provides a “linearization” of the Lie

显示 发表于 2025-3-22 04:08:58

Groups and Group Actionstroduces the concept of a group acting on a set, and defines the Grassmannians and Stiefel manifolds as homogenous manifolds arising from group actions of Lie groups. The last section provides an overview of topological groups, of which Lie groups are a special example, and contains more advanced ma

平庸的人或物 发表于 2025-3-22 06:20:20

Manifolds, Tangent Spaces, Cotangent Spaces, and Submanifoldsifolds, it is necessary to generalize the concept of a manifold to spaces that are not a priori embedded in some .. The basic idea is still that whatever a manifold is, it is a topological space that can be covered by a collection of open subsets .., where each .. is isomorphic to some “standard mod

CLAM 发表于 2025-3-22 11:54:41

Construction of Manifolds from Gluing Data ,ome indirect information about the overlap of the domains .. of the local charts defining our manifold . in terms of the transition functions . but where . itself is not known. For example, this situation happens when trying to construct a surface approximating a 3D-mesh. If we let Ω. = ..(.. ∩ ..)a

不妥协 发表于 2025-3-22 15:49:21

http://reply.papertrans.cn/28/2788/278754/278754_6.png

不妥协 发表于 2025-3-22 19:07:58

Riemannian Metrics and Riemannian Manifoldsfold. The idea is to equip the tangent space .. at . to the manifold . with an inner product 〈−, −〉., in such a way that these inner products vary smoothly as . varies on .. It is then possible to define the length of a curve segment on a . and to define the distance between two points on ..

负担 发表于 2025-3-22 22:56:27

Geodesics on Riemannian Manifolds the structure of a metric space on ., where .(., .) is the greatest lower bound of the length of all curves joining . and .. Curves on . which locally yield the shortest distance between two points are of great interest. These curves, called ., play an important role and the goal of this chapter is

团结 发表于 2025-3-23 04:02:47

http://reply.papertrans.cn/28/2788/278754/278754_9.png

压碎 发表于 2025-3-23 08:42:45

http://reply.papertrans.cn/28/2788/278754/278754_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Differential Geometry and Lie Groups; A Computational Pers Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 202