烈酒 发表于 2025-3-21 19:32:21

书目名称Deterministic Nonlinear Systems影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0269344<br><br>        <br><br>书目名称Deterministic Nonlinear Systems读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0269344<br><br>        <br><br>

放纵 发表于 2025-3-21 22:23:06

http://reply.papertrans.cn/27/2694/269344/269344_2.png

Accord 发表于 2025-3-22 01:40:57

http://reply.papertrans.cn/27/2694/269344/269344_3.png

野蛮 发表于 2025-3-22 05:37:12

,Systems with Phase Space Dimension , ≥ 3: Deterministic Chaos,uilibrium states and limit cycles increases significantly, and many of them have not yet been studied. Some saddle sets become possible, such as an equilibrium state of the saddle-focus type and a saddle limit cycle. A cycle of the saddle-focus type and a saddle torus can be realized in a phase spac

思想上升 发表于 2025-3-22 12:00:40

From Order to Chaos: Bifurcation Scenarios (Part I),ce of nonlinearity increases, the dynamical regime becomes more complicated. Simple attractors in the phase space of a dissipative system are replaced by more complicated ones. Under certain conditions, nonlinearity can lead to the onset of dynamical chaos. Moving along a relevant direction in the p

inspired 发表于 2025-3-22 12:57:22

http://reply.papertrans.cn/27/2694/269344/269344_6.png

inspired 发表于 2025-3-22 19:29:45

Robust and Nonrobust Dynamical Systems: Classification of Attractor Types,yagin systems on the plane, there appears a class of robust systems with nontrivial hyperbolicity, i.e., systems with chaotic dynamics. Chaotic attractors of robust hyperbolic systems are, in the rigorous mathematical sense, strange attractors. They usually represent some mathematical idealization a

气候 发表于 2025-3-22 23:15:00

http://reply.papertrans.cn/27/2694/269344/269344_8.png

dithiolethione 发表于 2025-3-23 05:21:22

http://reply.papertrans.cn/27/2694/269344/269344_9.png

HEED 发表于 2025-3-23 09:20:44

Quasiperiodic Oscillator with Two Independent Frequencies,ct that they include two or more independent frequencies in the oscillation spectrum: . where ..(.) = ..., . = 1, 2, ., .. As a result, .(.) in (12.1) is 2.-periodic in each argument ..(.), but the quasiperiodic process itself is, in the general case, non-periodic, i.e., .(.) ≠ .(. + ..).
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub