ETHOS 发表于 2025-3-21 20:09:38

书目名称Deep Neural Networks in a Mathematical Framework影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0264649<br><br>        <br><br>书目名称Deep Neural Networks in a Mathematical Framework读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0264649<br><br>        <br><br>

Thyroxine 发表于 2025-3-21 20:56:38

Deutschland 20 Jahre nach dem Mauerfall require when performing gradient descent steps to optimize the neural network. To represent the dependence of a neural network on its parameters, we then introduce the notion of parameter-dependent maps, including distinct notation for derivatives with respect to parameters as opposed to state vari

sed-rate 发表于 2025-3-22 00:45:29

Abschied vom Sozialstaat alter Prägungmeters, which allow us to perform gradient descent naturally over these vector spaces for each parameter. This approach contrasts with standard approaches to neural network modelling where the parameters are broken down into their components. We can avoid this unnecessary operation using the framewo

门闩 发表于 2025-3-22 05:55:48

http://reply.papertrans.cn/27/2647/264649/264649_4.png

内部 发表于 2025-3-22 11:47:28

http://reply.papertrans.cn/27/2647/264649/264649_5.png

古代 发表于 2025-3-22 16:09:19

http://reply.papertrans.cn/27/2647/264649/264649_6.png

古代 发表于 2025-3-22 18:47:16

Generic Representation of Neural Networks,meters, which allow us to perform gradient descent naturally over these vector spaces for each parameter. This approach contrasts with standard approaches to neural network modelling where the parameters are broken down into their components. We can avoid this unnecessary operation using the framewo

观察 发表于 2025-3-23 01:12:13

http://reply.papertrans.cn/27/2647/264649/264649_8.png

Acclaim 发表于 2025-3-23 02:48:32

http://reply.papertrans.cn/27/2647/264649/264649_9.png

Trypsin 发表于 2025-3-23 08:41:14

http://reply.papertrans.cn/27/2647/264649/264649_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Deep Neural Networks in a Mathematical Framework; Anthony L. Caterini,Dong Eui Chang Book 2018 The Author(s) 2018 deep learning.machine le