LANK 发表于 2025-3-21 19:56:48

书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0264625<br><br>        <br><br>书目名称Deep Learning in Multi-step Prediction of Chaotic Dynamics读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0264625<br><br>        <br><br>

Confidential 发表于 2025-3-22 00:12:15

http://reply.papertrans.cn/27/2647/264625/264625_2.png

Coronation 发表于 2025-3-22 03:03:49

http://reply.papertrans.cn/27/2647/264625/264625_3.png

奇怪 发表于 2025-3-22 07:11:13

Book 2021uctures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation..

数量 发表于 2025-3-22 10:03:54

http://reply.papertrans.cn/27/2647/264625/264625_5.png

Alveolar-Bone 发表于 2025-3-22 13:44:53

Paria Shirani,Lingyu Wang,Mourad Debbabia reference trajectory along independent directions. When a model is not available, an attractor can be estimated in the space of delayed outputs, that is, using a finite moving window on the data time series as state vector along the trajectory.

Alveolar-Bone 发表于 2025-3-22 18:22:46

http://reply.papertrans.cn/27/2647/264625/264625_7.png

中子 发表于 2025-3-22 23:30:48

Book 2021ost of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from determ

音乐学者 发表于 2025-3-23 01:22:19

http://reply.papertrans.cn/27/2647/264625/264625_9.png

令人悲伤 发表于 2025-3-23 09:29:24

M. L. Simoons,T. Boehmer,J. Roelandt,J. Poolresents a challenging task. Lastly, we consider two real-world time series of solar irradiance and ozone concentration, measured at two stations in Northern Italy. These dynamics are shown to be chaotic movements by means of the tools of nonlinear time-series analysis.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Deep Learning in Multi-step Prediction of Chaotic Dynamics; From Deterministic M Matteo Sangiorgio,Fabio Dercole,Giorgio Guariso Book 2021