negation 发表于 2025-3-21 17:19:39

书目名称Deep Learning and Missing Data in Engineering Systems影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0264595<br><br>        <br><br>书目名称Deep Learning and Missing Data in Engineering Systems读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0264595<br><br>        <br><br>

GNAT 发表于 2025-3-21 23:46:16

http://reply.papertrans.cn/27/2646/264595/264595_2.png

发源 发表于 2025-3-22 02:34:49

Missing Data Estimation Using Invasive Weed Optimization Algorithm,itute narrow artificial intelligence architectures and computational intelligence methods. This is normally aligned with dimensionality and the number of rows. We propose a framework for the imputation procedure that uses a deep learning method with a swarm intelligence algorithm called deep learning-invasive weed optimization (DL-IWO) approach.

浮夸 发表于 2025-3-22 07:09:23

Missing Data Estimation Using Swarm Intelligence Algorithms from Reduced Dimensions,ained from the bottleneck layer of the deep autoencoder network; in this case, the number of reduced features is 30. The aim is to observe whether this approach preserves accuracy while minimizing execution time.

Muffle 发表于 2025-3-22 10:59:34

http://reply.papertrans.cn/27/2646/264595/264595_5.png

运气 发表于 2025-3-22 16:43:10

http://reply.papertrans.cn/27/2646/264595/264595_6.png

运气 发表于 2025-3-22 20:20:11

http://reply.papertrans.cn/27/2646/264595/264595_7.png

Outshine 发表于 2025-3-22 23:46:27

http://reply.papertrans.cn/27/2646/264595/264595_8.png

无脊椎 发表于 2025-3-23 05:13:23

Missing Data Estimation Using Firefly Algorithm,izing an error function based on the interrelationship and correlation between features in the dataset. The proposed methodology in this chapter, therefore, has longer running times, however, the promising potential outcomes justify the trade-off. Also, basic knowledge of statistics is presumed.

molest 发表于 2025-3-23 07:00:59

Book 2019ing systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:.deep autoencoder neural networks;.deep denoising autoenco
页: [1] 2 3 4 5
查看完整版本: Titlebook: Deep Learning and Missing Data in Engineering Systems; Collins Achepsah Leke,Tshilidzi Marwala Book 2019 Springer Nature Switzerland AG 20