Sentry 发表于 2025-3-21 16:50:34
书目名称Data Science影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0263047<br><br> <br><br>书目名称Data Science读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0263047<br><br> <br><br>清真寺 发表于 2025-3-21 21:32:31
http://reply.papertrans.cn/27/2631/263047/263047_2.pngimmunity 发表于 2025-3-22 01:13:56
http://reply.papertrans.cn/27/2631/263047/263047_3.pngindifferent 发表于 2025-3-22 08:09:55
https://doi.org/10.1007/978-3-319-56585-9extraction of essential data and the modeling strategy chosen. The data of the CTR task are often very sparse, and Factorization Machines (FMs) are a class of general predictors working effectively with it. However, the performance of FMs can be limited by the fixed feature representation and the sa有罪 发表于 2025-3-22 11:02:06
Nikolay Konstantinov,Sergey Dorichenkots at combining low-order and high-order functions. However, they ignore the importance of the attention mechanism for learning input features. The ECABiNet model is proposed in this article to enhance the performance of CTR. On the one hand, the ECABiNet model can learn the importance of features dEntropion 发表于 2025-3-22 13:26:21
http://reply.papertrans.cn/27/2631/263047/263047_6.pngEntropion 发表于 2025-3-22 20:15:46
http://reply.papertrans.cn/27/2631/263047/263047_7.pngCeliac-Plexus 发表于 2025-3-22 22:35:44
Nikolay Konstantinov,Sergey Dorichenkoflow graphs have attracted much attention since they can deal with the obfuscation problem to a certain extent. Many malware classification methods based on data flow graphs have been proposed. Some of them are based on user-defined features or graph similarity of data flow graphs. Graph neural netwmalign 发表于 2025-3-23 04:55:47
https://doi.org/10.1007/978-3-030-24933-5 and cannot obtain satisfactory results in some scenarios. In this paper, we design a semisupervised time series anomaly detection algorithm based on metric learning. The algorithm model mines the features in the time series from the perspectives of the time domain and frequency domain. Furthermore,MAOIS 发表于 2025-3-23 09:30:56
http://reply.papertrans.cn/27/2631/263047/263047_10.png