NIL 发表于 2025-3-26 21:03:08
,Foundations of Covariant Schrödinger Semigroups,..The following definitions will be very convenient in the sequel:...a) Let . be a smooth metric .-vector bundle. Then a Borel section . is called a . on ., if one has .. Here, . denotes the adjoint of the finite-dimensional linear operator. . with respect to the fixed metric on .云状 发表于 2025-3-27 03:52:37
http://reply.papertrans.cn/24/2392/239191/239191_32.png迅速飞过 发表于 2025-3-27 07:41:00
,,,-properties of Covariant Schrödinger Semigroups,In this chapter, . . be an arbitrary covariant Schrödinger bundle..The aim of this chapter is to extend the L.-bounds for e. from Theorem IV.10 to arbitrary covariant Schr¨odinger semigroups, with an explicit quantitative control of the operator norms.报复 发表于 2025-3-27 13:19:36
http://reply.papertrans.cn/24/2392/239191/239191_34.png啤酒 发表于 2025-3-27 14:29:13
,Essential Self-adjointness of Covariant Schrödinger Operators,In this chapter, . . ..fiscal 发表于 2025-3-27 20:46:25
Smooth Compactly Supported Sections as Form Core,Let . be an arbitrary covariant Schrödinger bundle and assume . to be .-decomposable.Hippocampus 发表于 2025-3-28 00:26:47
Applications,In this section, . = 3..The Kato–Simon inequality (or, to be precise, its consequence (VII.18) for the corresponding bottoms of spectra) is of fundamental importance in quantum mechanics: As we shall explain in a moment, it provides a mathematically rigorous proof of the following statement..Extort 发表于 2025-3-28 02:05:31
Covariant Schrödinger Semigroups on Riemannian Manifolds搏斗 发表于 2025-3-28 08:36:00
http://reply.papertrans.cn/24/2392/239191/239191_39.pngInnocence 发表于 2025-3-28 11:57:04
http://reply.papertrans.cn/24/2392/239191/239191_40.png