CRUST
发表于 2025-3-21 19:39:35
书目名称Convexity Methods in Hamiltonian Mechanics影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0237856<br><br> <br><br>书目名称Convexity Methods in Hamiltonian Mechanics读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0237856<br><br> <br><br>
FRET
发表于 2025-3-22 00:09:16
http://reply.papertrans.cn/24/2379/237856/237856_2.png
NUL
发表于 2025-3-22 04:24:52
978-3-642-74333-7Springer-Verlag Berlin Heidelberg 1990
周年纪念日
发表于 2025-3-22 06:51:01
https://doi.org/10.1007/978-1-349-00207-8Consider a system of . linear equations with continuous . -periodic coefficients: . where . (.) is a real . × . matrix, depending continuously on . ∈ ℝ such that: ..
superfluous
发表于 2025-3-22 09:01:50
http://reply.papertrans.cn/24/2379/237856/237856_5.png
monogamy
发表于 2025-3-22 14:07:00
http://reply.papertrans.cn/24/2379/237856/237856_6.png
monogamy
发表于 2025-3-22 20:57:33
http://reply.papertrans.cn/24/2379/237856/237856_7.png
可耕种
发表于 2025-3-23 01:02:53
Manufacturing a Climate of Fear,The fixed-energy problems are the most interesting (and the most difficult) in the theory, because of their geometric significance. Many are still unsolved, and we conclude this chapter by listing the most important ones.
PATRI
发表于 2025-3-23 03:09:31
http://reply.papertrans.cn/24/2379/237856/237856_9.png
故意
发表于 2025-3-23 06:02:15
Convex Hamiltonian Systems,We start from a . (., .*, 〈·,·〉), that is, two real vector spaces . and .*, and a bilinear map (.,.*) → 〈.,.*〉 into ℝ which separates points: ..