施魔法
发表于 2025-3-25 05:51:26
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
adroit
发表于 2025-3-25 11:27:24
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
内向者
发表于 2025-3-25 14:12:18
http://reply.papertrans.cn/24/2372/237196/237196_23.png
BOGUS
发表于 2025-3-25 17:12:07
Symmetry of Solutions of a Semilinear Elliptic Problem in an Annulus,r. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
良心
发表于 2025-3-25 20:21:33
http://reply.papertrans.cn/24/2372/237196/237196_25.png
高度赞扬
发表于 2025-3-26 02:39:16
On a Class of Critical Elliptic Equations of Caffarelli-Kohn-Nirenberg Type,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
coltish
发表于 2025-3-26 05:11:11
http://reply.papertrans.cn/24/2372/237196/237196_27.png
bronchodilator
发表于 2025-3-26 10:29:01
http://reply.papertrans.cn/24/2372/237196/237196_28.png
Functional
发表于 2025-3-26 14:19:44
http://reply.papertrans.cn/24/2372/237196/237196_29.png
Indecisive
发表于 2025-3-26 16:51:43
http://reply.papertrans.cn/24/2372/237196/237196_30.png