Inspection 发表于 2025-3-21 17:28:53
书目名称Continuous Selections of Multivalued Mappings影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0237017<br><br> <br><br>书目名称Continuous Selections of Multivalued Mappings读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0237017<br><br> <br><br>aspect 发表于 2025-3-21 23:29:19
http://reply.papertrans.cn/24/2371/237017/237017_2.png讽刺滑稽戏剧 发表于 2025-3-22 01:08:09
http://reply.papertrans.cn/24/2371/237017/237017_3.pngMAPLE 发表于 2025-3-22 06:48:22
http://reply.papertrans.cn/24/2371/237017/237017_4.png来就得意 发表于 2025-3-22 08:51:08
http://reply.papertrans.cn/24/2371/237017/237017_5.png肮脏 发表于 2025-3-22 15:34:36
Finite-Dimensional Selection Theoremer semicontinuous mapping. The aim of the present chapter is to find a solution for at most (. + 1)-dimensional paracompact domains, . ∈ {−1, 0, 1, 2,...}. More precisely, we shall give an answer to the following question:肮脏 发表于 2025-3-22 20:35:14
Examples and Counterexamplesin the main selection theorems of §1–§5. In Theorems (6.1), (6.4), (6.5) and (6.10) we follow (with modifications) . Theorem (6.8) is taken from (for another proof see ). Example from Theorem (6.7) was constructed in . The remarkable example due to Pixley is the last theore雄辩 发表于 2025-3-22 21:19:08
Addendum: New Proof of Finite-Dimensional Selection Theoremed by Ščepin and Brodskiĭ . First, note that there is only one proof of the Finite-dimensional selection theorem . (Observe that the proof is a reformulation of Michael’s proof in terms of coverings and provides a way to avoid . metric considerations.) Second, gives in fact a g裂缝 发表于 2025-3-23 05:12:21
http://reply.papertrans.cn/24/2371/237017/237017_9.pngsclera 发表于 2025-3-23 08:50:07
http://reply.papertrans.cn/24/2371/237017/237017_10.png