enmesh 发表于 2025-3-23 10:51:41

http://reply.papertrans.cn/24/2361/236040/236040_11.png

Minuet 发表于 2025-3-23 17:05:31

http://reply.papertrans.cn/24/2361/236040/236040_12.png

Polydipsia 发表于 2025-3-23 19:09:04

http://reply.papertrans.cn/24/2361/236040/236040_13.png

abracadabra 发表于 2025-3-23 23:10:01

Charakteristika des Baumarktes,and compared with those of seasonal ARIMA and VEC models. The comparison results show that recurrent neural networks (i.e., long short-term memory and gated recurrent unit networks) can provide higher accuracies in forecasting the long-term variations of HCS than statistical linear time series models based on typical error measures.

paltry 发表于 2025-3-24 02:49:43

Construction Time Series Forecasting Using Multivariate Time Series Models,s compared with the results of the univariate seasonal ARIMA model. The comparison results show that the VEC model outperforms the seasonal autoregressive integrated moving average (SARIMA) model based on typical error measures.

exclusice 发表于 2025-3-24 09:44:39

http://reply.papertrans.cn/24/2361/236040/236040_16.png

reaching 发表于 2025-3-24 13:09:51

Textbook 2023tion. The book maximizes students’ understanding of the necessary theoretical background of data analytics, and explains the implementation of data analytics techniques to solve the actual problems in the construction industry. . ..

古文字学 发表于 2025-3-24 16:06:26

http://reply.papertrans.cn/24/2361/236040/236040_18.png

incubus 发表于 2025-3-24 21:47:51

http://reply.papertrans.cn/24/2361/236040/236040_19.png

FEMUR 发表于 2025-3-24 23:17:54

http://reply.papertrans.cn/24/2361/236040/236040_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Construction Analytics; Forecasting and Inve Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K Textbook 2023 The Editor(s) (if applicable)