表范围 发表于 2025-3-21 18:15:21

书目名称Computer Vision – ECCV 2012影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0234156<br><br>        <br><br>书目名称Computer Vision – ECCV 2012读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0234156<br><br>        <br><br>

Obstruction 发表于 2025-3-21 22:03:37

http://reply.papertrans.cn/24/2342/234156/234156_2.png

ADORN 发表于 2025-3-22 01:00:53

http://reply.papertrans.cn/24/2342/234156/234156_3.png

骚动 发表于 2025-3-22 06:15:07

https://doi.org/10.1007/978-1-349-01488-0ations and relative scores between pairs of detections are considered as sets of unordered items. Directly training classification models on sets of unordered items, where each set can have varying cardinality can be difficult. In order to overcome this problem, we propose SetBoost, a discriminative

Kernel 发表于 2025-3-22 11:21:44

The Directory of Museums & Living Displaysn the last two decades, the problem of recognizing facial images across aging remains an open problem. In this paper, we propose a relative craniofacial growth model which is based on the science of craniofacial anthropometry. Compared to the traditional craniofacial growth model, the proposed metho

抒情短诗 发表于 2025-3-22 13:50:52

http://reply.papertrans.cn/24/2342/234156/234156_6.png

抒情短诗 发表于 2025-3-22 17:39:00

https://doi.org/10.1007/978-3-642-24415-5ing images as the supervising information to guide the generation of random trees, thus enabling the retrieved nearest neighbor images not only visually alike but also semantically related. Secondly, different from conventional decision tree methods, which fuse the information contained at each leaf

Indecisive 发表于 2025-3-23 00:59:09

http://reply.papertrans.cn/24/2342/234156/234156_8.png

整顿 发表于 2025-3-23 03:18:05

Exceptional sets on the boundary,wishing to achieve good results. While a mixture of linear classifiers is capable of modelling this non-linearity, learning this mixture from weakly annotated data is non-trivial and is the paper’s focus. Our approach is to identify the modes in the distribution of our positive examples by clusterin

莎草 发表于 2025-3-23 07:18:17

The Disabled Body in Contemporary Artsuch queries is “car on the road”. Existing image retrieval systems typically consider queries consisting of object classes (i.e. keywords). They train a separate classifier for each object class and combine the output heuristically. In contrast, we develop a learning framework to jointly consider o
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Computer Vision – ECCV 2012; 12th European Confer Andrew Fitzgibbon,Svetlana Lazebnik,Cordelia Schmi Conference proceedings 2012 Springer-V