我没有辱骂 发表于 2025-3-21 16:54:25
书目名称Computer Vision – ACCV 2022影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0234139<br><br> <br><br>书目名称Computer Vision – ACCV 2022读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0234139<br><br> <br><br>Neutropenia 发表于 2025-3-22 00:17:35
Temporal-Aware Siamese Tracker: Integrate Temporal Context for 3D Object Trackingnt Siamese trackers focus on aggregating the target information from the latest template into the search area for target-specific feature construction, which presents the limited performance in the case of object occlusion or object missing. To this end, in this paper, we propose a novel temporal-awAffiliation 发表于 2025-3-22 03:53:22
http://reply.papertrans.cn/24/2342/234139/234139_3.png西瓜 发表于 2025-3-22 05:26:32
http://reply.papertrans.cn/24/2342/234139/234139_4.pngOverride 发表于 2025-3-22 12:20:34
NEO-3DF: Novel Editing-Oriented 3D Face Creation and Reconstruction user might wish to edit the reconstructed 3D face, but 3D face editing has seldom been studied. This paper presents such method and shows that reconstruction and editing can help each other. In the presented framework named NEO-3DF, the 3D face model we propose has independent sub-models correspond烧烤 发表于 2025-3-22 13:54:01
LSMD-Net: LiDAR-Stereo Fusion with Mixture Density Network for Depth Sensinghe stereo camera sensor can provide dense depth prediction but underperforms in texture-less, repetitive and occlusion areas while the LiDAR sensor can generate accurate measurements but results in sparse map. In this paper, we advocate to fuse LiDAR and stereo camera for accurate dense depth sensin烧烤 发表于 2025-3-22 20:51:44
Point Cloud Upsampling via Cascaded Refinement Network by carefully designing a single-stage network, which makes it still challenging to generate a high-fidelity point distribution. Instead, upsampling point cloud in a coarse-to-fine manner is a decent solution. However, existing coarse-to-fine upsampling methods require extra training strategies, whiOATH 发表于 2025-3-22 23:58:35
http://reply.papertrans.cn/24/2342/234139/234139_8.png阻挡 发表于 2025-3-23 03:41:42
Vectorizing Building Blueprintslueprint. A state-of-the-art floorplan vectorization algorithm starts by detecting corners, whose process does not scale to high-definition floorplans with thin interior walls, small door frames, and long exterior walls. Our approach 1) obtains rough semantic segmentation by running off-the-shelf senitric-oxide 发表于 2025-3-23 06:22:00
http://reply.papertrans.cn/24/2342/234139/234139_10.png