召集会议 发表于 2025-3-21 16:25:18
书目名称Computer Vision Approaches to Medical Image Analysis影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0234019<br><br> <br><br>书目名称Computer Vision Approaches to Medical Image Analysis读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0234019<br><br> <br><br>下边深陷 发表于 2025-3-21 23:11:17
http://reply.papertrans.cn/24/2341/234019/234019_2.png我们的面粉 发表于 2025-3-22 01:25:59
http://reply.papertrans.cn/24/2341/234019/234019_3.pnginterlude 发表于 2025-3-22 05:59:53
http://reply.papertrans.cn/24/2341/234019/234019_4.pngDawdle 发表于 2025-3-22 10:06:01
http://reply.papertrans.cn/24/2341/234019/234019_5.pngPLIC 发表于 2025-3-22 15:26:28
http://reply.papertrans.cn/24/2341/234019/234019_6.pngPLIC 发表于 2025-3-22 20:42:54
http://reply.papertrans.cn/24/2341/234019/234019_7.png泥瓦匠 发表于 2025-3-22 21:23:47
http://reply.papertrans.cn/24/2341/234019/234019_8.png垫子 发表于 2025-3-23 02:13:46
Comparative Analysis of Kernel Methods for Statistical Shape Learningthe statistics on a set of training shapes, which are then used for a given image segmentation task to provide the shape prior. In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized lPLIC 发表于 2025-3-23 06:30:13
http://reply.papertrans.cn/24/2341/234019/234019_10.png