Proponent 发表于 2025-3-28 18:37:14

https://doi.org/10.1007/978-1-349-22199-8d in polynomial time. The previously best approximation ratio for the first class of graphs (also known as unweighted quasi-bipartite graphs) is ≈ 1.217 (Gröpl et al. ) is reduced in this paper to 8/7–1/160≈ 1.137. For the case of graphs where terminals form a dominating set, an approximation ratio of 4/3 is achieved.

Mast-Cell 发表于 2025-3-28 19:41:28

China’s Grain Economy and Trade Policyrelativisation of .. iterated . times provides a natural separation between Res(.) and Res(.+1). We prove the same result for the iterated relativisation of .. if the tree-like proof system Res*(.) is considered instead of Res (.).

发表于 2025-3-29 02:28:08

http://reply.papertrans.cn/24/2339/233826/233826_43.png

Obligatory 发表于 2025-3-29 06:15:03

http://reply.papertrans.cn/24/2339/233826/233826_44.png

arcane 发表于 2025-3-29 10:59:00

Relativisation Provides Natural Separations for Resolution-Based Proof Systemsrelativisation of .. iterated . times provides a natural separation between Res(.) and Res(.+1). We prove the same result for the iterated relativisation of .. if the tree-like proof system Res*(.) is considered instead of Res (.).

Plaque 发表于 2025-3-29 11:46:37

http://reply.papertrans.cn/24/2339/233826/233826_46.png

弯弯曲曲 发表于 2025-3-29 17:14:24

https://doi.org/10.1007/978-1-349-22199-8for all . ≥ 2. Further, this is equivalent to the existence of a propositional proof system in which the disjointness of all .-tuples is shortly provable. We also show that a strengthening of this conditions characterizes the existence of optimal proof systems.

使成波状 发表于 2025-3-29 21:57:04

http://reply.papertrans.cn/24/2339/233826/233826_48.png

CEDE 发表于 2025-3-29 23:55:22

http://reply.papertrans.cn/24/2339/233826/233826_49.png

爱得痛了 发表于 2025-3-30 05:53:08

http://reply.papertrans.cn/24/2339/233826/233826_50.png
页: 1 2 3 4 [5] 6 7
查看完整版本: Titlebook: Computer Science -- Theory and Applications; First International Dima Grigoriev,John Harrison,Edward A. Hirsch Conference proceedings 2006