entail
发表于 2025-3-23 09:54:38
http://reply.papertrans.cn/24/2328/232702/232702_11.png
大范围流行
发表于 2025-3-23 17:35:29
http://reply.papertrans.cn/24/2328/232702/232702_12.png
CRACY
发表于 2025-3-23 21:57:15
http://reply.papertrans.cn/24/2328/232702/232702_13.png
有发明天才
发表于 2025-3-23 22:39:47
Computational Methods and Function Theory978-3-540-47139-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
Acetaldehyde
发表于 2025-3-24 06:23:56
http://reply.papertrans.cn/24/2328/232702/232702_15.png
混合,搀杂
发表于 2025-3-24 08:24:50
On some analytic and computational aspects of two dimensional vortex sheet evolution,e evolution of a slightly perturbed flat vortex sheet. We will indicate some open problems of current research and propose a new physically desingularized Vortex sheet equation, which agrees with the finite thickness vortex layer equations in the localized approximation.
Arboreal
发表于 2025-3-24 11:17:08
Teilstudie 2: Entwicklungsziele im Alter,e . Ω. as . We are interested in the explicit characterization of Ω. for some specific domains as well as the corresponding . ε ..(ω), i.e. the ones with .. In this paper we solve completely the maximal range problem for the slit domains . These results yield, for instance, new inequalities relating
Infinitesimal
发表于 2025-3-24 16:31:20
https://doi.org/10.1007/978-3-658-24970-0ny smaller ellipse with the same foci. For the uniform and a certain weighted uniform norm, and for the case that the two ellipses are not “too close”, we derive sharp estimates of this type and determine the corresponding extremal polynomials. These Bernstein type inequalities are closely connected
代替
发表于 2025-3-24 19:51:07
https://doi.org/10.1007/978-3-658-24970-0, we explain how the corner singularities of the of the derivative of the boundary correspondence function can be represented by Jacobi weight functions, and study the convergence properties of an associated Fourier-Jacobi method for approximating this derivative. The practical significance of this
与野兽博斗者
发表于 2025-3-25 03:07:08
http://reply.papertrans.cn/24/2328/232702/232702_20.png